National Spatial Data Infrastructure (NSDI)

Data Content standards - Soils (Draft Version 2.0)

Department of Science & Technology Ministry of Science & Technology

Government of India, New Delhi December 2011

National Spatial Data Infrastructure (NSDI)

Department of Science & Technology Ministry of Science & Technology Government of India, New Delhi December 2011

Data Content standards- Soils (Draft Version 2.0)

Published by National Spatial data Infrastructure (NSDI) Department of Science and Technology East block-7, Level-5, R K Puram New Delhi-110066 Tel : 011-26177249, Fax : 011-26182967

Designed by : Gateway Media Pvt Ltd Printed at : Srilakshmi Graphics

NSDI Vision

National infrastructure for the availability and access to organised spatial data

Use of this infrastructure at

Community, Local, Regional

And National levels

for sustained economic growth.

ACKNOWLEDGEMENTS

The Working Group (WG) on Data Content Standards is grateful to all the members for their support and cooperation in preparing the the Data Content Standards -Soils.

The WG would like to gratefully acknowledge all the nodal agencies for necessary inputs, encouragement and guidance in finalizing the NSDI Data Content Standards-Soils (Draft) document. The inputs and suggestions by the Scientists of NBSS&LUP are duly acknowledged.

The WG would like to place on record its deep sense of appreciation and gratitude to NSDI, NBSS&LUP and all Nodal Officers of NSDI for their active participation in the discussions and deliberations for shaping the NSDI Data Content Standards - Soils (Draft) document to maintain international standards in organization of soil resource databases under NSDI frame work.

In preparation of Data Content Standards on soils (Draft), the WG referred to a wide variety of spatial data infrastructures especially on data contents standards for soils adopted by various national and international organizations. The WG also referred to articles by renowned National and International experts in preparation of this document. The inputs and suggestions given by the reviewers on the document are duly acknowledged.

G. W. Amineday

Dr. G. P. Obi Reddy Sr. Scientist & In Charge, GIS NBSS&LUP, Nagpur and Chairman, NSDI Working Group on "Data Content Standards"

Preface

In India, various agencies acquire and provide soil related data at different levels. Agencies at the National, State and Project levels generate soil data for different purposes. With rapidly changing landscape in both urban and rural areas and increasing emphasis on the conservation of the soil resources for Sustainable Agriculture, acquisition and sharing of soil data assumes a lot of importance. A greater degree of coordination is therefore essential for avoiding duplication in data acquisition, making the available data accessible to the end users, and sharing the data sets in a standard form for easy integration to support decisions. The National Spatial Data Infrastructure (NSDI), since its inception in June 2006, has been working towards devising new standards and adapting available standards to facilitate better coordination and sharing of digital geo-spatial data. The NSDI Working Group on 'Data Content Standard' has been working on various themes like Topography, Geology, Soil, Land Use, Groundwater, Meteorology to bring out the Content Standards. The Content Standards are expected to ensure setting up of interoperable organizational data nodes for automatic sharing and integration of digital geo-spatial data by end users.

I am happy that the Working Group on 'Data Content Standard' has brought out and released its Draft Version 2.0 primarily aimed at standardizing the tabular data associated with the soil maps, map units and map unit components of institutions/organizations associated with compilation of soil data. Several national level agencies participating in the NSDI initiative have contributed to the preparation of this Draft Version of the document under the overall guidance of the National Soil Survey & Land Use Planning (NBSSLUP) of the Indian Council of Agricultural Research (ICAR) of the Ministry of Agriculture, Government of India.

I hope that release of this Draft Version 2.0 of the Data Content Standard on Soil will open up a discussion amongst various stakeholders at different levels soil survey so as to publish the final version of the Content Standard document on Soils.

ten

(Maj Gen Dr R Siva Kumar)

CEO, NSDI

New Delhi

12 Decemeber 2011

FOREWORD

The National Spatial Data Infrastructure (NSDI) is a nodal agency to assemble geographic data nationwide on various themes to meet the requirement of various user community. GIS applications of many different disciplines have a recurring need for a few themes of data. The framework is a collaborative based effort in which these commonly needed data themes are developed, maintained, and integrated by public and private organizations within a geographic area. The document on Data Content Standard on soils is one of the key building blocks and forms the data backbone of the NSDI.

The purpose of this Data Content Standard on soils is to standardize the names, definitions, ranges of values, and other characteristics of soil survey map attribute data developed by the National Bureau of Soil Survey and Land Use Planning (NBSS&LUP), Nagpur. The soil attribute data associated with soil maps include the soil-site, physical and chemical properties of the various soils being described, interpretative information, the arrangement of these soils into the soil map units identified on the soil maps, and information about the soil map units themselves. The attribute data have no spatial relationship until they are linked to the maps *via* the map unit symbol and other unique identifiers. However, there is information included linking the soil data to geographical areas such as states, districts and major physiographic regions.

I am sure this document on data Content Standard on soils will be very useful to design and development of soils database to interpret the datasets of this vital resource for future use. I appreciate the efforts made by Dr. G.P. Obi Reddy, Sr. Scientist & Nodal Officer of NDSI and Chairmen, Working Group on Data Content Standards-Soils, Experts from NSDI and other contributors, who immensely contributed to organize the material for this publication. I am sure that this publication will be helpful for all those concerned in use soil resource databases and application in various developmental processes.

Dipak Sarkar

DIPAK SarKar Director, NBSS&LUP& Member, EC, NSDI

S.No.	Name of the official	Designation	Organization
1.	Dr. G.P. Obi Reddy	Chairman	National Bureau of soil survey & Land Use Planning (NBSS&LUP), Nagpur
2.	Shri P C Mohanan	Member	Central Statistical Organization, New Delhi
3.	Shri J M Chawla	Member	NCAER, Delhi
4.	Ms Smriti K Upadhyay	Member	Central Pollution Control Board, New Delhi
5.	Dr A K Singh	Member	Ministry of Rural Development, Delhi
6.	Shri R K Singh	Member	National Disaster Management Authority, New Delhi
7.	Shri M L Srivastava	Member	Forest Survey of India (FSI), Dehradun
8.	Shri P.S.Chhikara	Member	ORGI
9.	Dr Vandana Sharma	Member	National Informatics Centre (NIC), New Delhi
10.	Dr Y V S Murthy	Member	National Remote Sensing Centre (NRSC), Hyderabad
11.	Shri S K Sinha	Member	Central Ground Water Board (CGWB), Faridabad
12.	Shri E Haque	Member	Ministry of Earth Sciences (MoES), New Delhi
13.	Dr S K Pathan	Member	Space Application Centre (SAC), Ahemadabad
14.	Shri Prashant Kumar Gupta	Member	Central Water Commission (CWC), New Delhi
15.	Shri Rahul Saxena	Member	Indian Meteorological Department (IMD), New Delhi
16.	Shri R N Nanda	Member	Survey of India (SOI), Hyderabad
17.	Shri S K Bohra	Member	Geological Survey of India (GSI), New Delhi
18.	Commodore K M Nair	Member	NHO
19.	Shri Niraj Gyagi	Member	Department of Science & Technology (DST), New Delhi
20.	Maj Gen R C Padhi	Member	Ministry of Defence (MoD), New Delhi
21.	Shri Kirtimoy Mukhopadhyay	Member	NATMO, Kolkata

TABLE OF CONTENTS

S.	No.	Торіс	Pg. No.
1		Background	1
2		Introduction	2
	2.1	Purpose	3
	2.2	Principles	3
	2.3	Scope	3
	2.4	Limits	3
3		Content of the standards for NSDI	4
	3.1	Geographic data standard – Data elements	4
	3.2	Data dictionary	4
	3.2.1	Soil site parameters	5
	3.2.2	Soil morphological parameters	31
	3.2.3	Soil physical parameters	50
	3.2.4	Soil chemical parameters	57
4		Summary	65
5		Annexure A: Soil Taxonomy	66

1. Background

Under the initiatives of Working Group on Data Content Standards of NSDI, the content standard for soils was developed from the perspective of defining the information required by a prospective user to determine the availability of a set of soil geospatial data; to determine the fitness and the set of soil geospatial data for an intended use and to determine the means of accessing the set of soil geospatial data. This standard is for the documentation of soil geospatial data. The challenges associated with maintaining high quality soil data in electronic environments require a clear understanding of data content standards and effective coordination and management of the organization's data requirements. The Content Standard for Soils uses to the maximum extent possible, existing International or National Standards in defining the data elements, sub elements, short names, data type, unit of measure, maximum, minimum value of each parameter and brief description.

S.No.	Name of the Working Group	Chairman
1	Metadata Standards	Dr. S.K. Pathan, SAC,
		Ahemadabad
2	Interoperability and data Exchange	Shri Subash Ashutosh, FSI
		Dehradun
3	Data Content Standards	Dr. G.P. Obi Reddy, NBSS&LUP,
		Nagpur
4	Node architecture & Guidelines	Shri S.K. Sinha, CGWB,
		Faridabad
5	Network and Access Control	Dr. Vandana Sharma, NIC, New
		Delhi
6	Cost Recovery/ Payment Gateways	Dr. Y.V.S. Murthy, NRSC,
		Hyderabad
7	Outreach &Communication	Dr. Yogesh Paithankar, CWC,
		New Delhi
8	Policy, Legal, Security and	Brig Girish Kumar, SOI, New
	Projections/Transformations	Delhi
9	Data Delivery and Capacity building	Shri S K Bohra. GSI

NSDI Working Groups

2. Introduction

The main aim of Data Content Standard on soils is to understand and support the exchange of metadata on soils under umbrella of National Spatial Data Infrastructure (NSDI). The Data Content Standard on soils explain about the various soil parameters and their semantic content of geodetic control databases to develop standards for their use across the other spatial databases and to provide the metadata for the user community. It, in turn, helps to reduce the redundancy in data storage and development. Adoption of the Data Content Standard further enhances the database design, organization and development of the geospatial soil resource data.

The development framework for Data Content Standard on soils explain the various soil parameters, data specifications and provides a coherent set of requirements: Data Content Standard on soils describes in greater detail the spatial data themes defined in the database, and thus provides a sound starting point for the thematic aspects of the data specification development. It defines the elements necessary for inter-operability and data harmonization including cross-theme issues. It specifies requirements and recommendations with regard to data specification elements of common use, like the spatial and temporal schema, unique identifier management, object referencing, a generic network model, some common code lists, etc. The methodology for the development of data specifications defines a repeatable methodology enabling to arrive from user requirements to a data specification through a number of steps including use-case development, initial specification refinement. It also defines how geographic information can be encoded to enable transfer processes between the systems of the data providers.

The standard was developed for soils from the perspective of defining the soil information required by a prospective user to determine the availability of a set of geo-spatial data; to determine the fitness and the set of geo-spatial data for an intended use; to determine the means of accessing the set of geo-spatial data; and to successfully transfer the set of geospatial data. As such, the standard establishes the names of data elements and compound elements to be used for these purposes, definitions of these data elements and compound elements, and information about the values that are to be provided for the data elements.

2.1 Purpose

This document contains the proposal of "Data Specifications" for description and scope of spatial data themes of soils. This deliverable of the "Data Specifications" is considered as a starting point for the development of Data Specifications. The descriptions of individual spatial data themes of soils have been established at different levels of detail. The purposes of the data Content Standard are:

- To provide common definitions for geo-spatial information on soils to facilitate the effective use and understanding the information availability.
- To standardize attributes to enhance the data sharing.
- To resolve discrepancies related to the use of homonyms and synonyms in the datasets of various organizations/agencies, which will minimize duplication within and among them.
- To provide guidance and direction for geo-spatial professionals on standardized attributes and definitions to improve the standards in data creation and management.
- To use participatory involvement in the standard development to reach out to various organizations, to encourage application of the standards.

2.2 Principles

This standard is intended to support the collection and processing of geospatial metadata on soils. Geo-spatial soil database has been logical grouped into soil- site, morphological, physical and chemical parameters.

2.3 Scope

Data Content Standard (Draft Version 2.0) on soils explains the content standards applicable to soil related parameters of any resolution except that associated taxonomies aare relevant up to a resolution of soil maps of 1:250,000 scale.

2.4 Limits

Data Content Standard on soils is limited to data associated with the maps, associated attribute/tabular data reference to NSDI. The data elements, which are overlapping with any other participating institute/organization of NSDI need to be specified.

3. Content of the standard for NSDI

Data Content Standard on soils contains a listing of data elements used to store the various broad groups and interpretive data associated with the soils. The relationships within the data were explained through entity relationship model in order to properly utilize the data as it is intended.

3.1 Geographic data standard - Data elements

In the 'Data Content Standard' we considered each data element as a table. Various data elements have been specified under soil site, morphological, physical and chemical properties pertaining to the NSDI database.

For example, we have two data elements for parameter 'slope'

slope_aspect slope_gradient

3.2 Data dictionary

In this section, various data elements have been specified under soil site, morphological, physical and chemical properties pertaining to the NSDI database which explains the data element-wise, its short name, data type, unit of measure, minimum value, maximum value and brief description on data elements and its sub-classes need to be given. Data dictionary has four sections namely soil site parameters, soil morphological parameters, soil physical parameters and soil chemical parameters.

3.2.1 Soil-site parameters

Soil-site parameters refer to the various aspects of identification details, the prevailing geological, climatic, topographic details of the soils. The soil-site parameters and their detailed description are shown in table 1.

S. No	Data Element Name	Short Name	Data Type	Unit Of Measure	Minimum value	Maximum Value	Description
NO	Name	Name	Турс	Wicasar c	value	Value	
1	Observation No		Character				Follow codification as indicated below (district symbol followed by block, village and profile number).
2	Toposheet No		Character				A toposheet is a shortened name for topographic sheet. They are essentially contain information about an area like roads, railways, settlements, canals, rivers, electric poles, post offices etc.
3	Photograph No		Character				The number assigned to the photograph, where the photograph was captured at the profile site.
4	Author and Date of examination		Character				Give the name of the Officer in- charge of the field party and date of observation.
5	Location details		Character				Indicate the exact location of the profile on the cadastral map within the survey number and describe the location of the profile with reference to some nearby fixed features(identifica tion marks).

Table: 1 Soil-site parameters and their description

	Latitude	Character	It is defined with
	Latitude	Character	respect to an
			equatorial
	L ava atta vala	Character	reference plane It is defined in
	Longitude	Character	
			terms of
			meridians which
			are half circles
			running from pole
			to pole
	Village	Character	A group of
			houses and
			associated
			buildings larger
			than a hamlet
			and smaller than
			a town situated in
			a rural area
	Tehsil	Character	It consists of
			towns and
			villages around
			the towns
	District	Character	A division of
			territory as a
			country or state
			marked off for
			administrative,
			electoral or other
			purposes
	State	Character	A division of
	Jiale	Character	territory as a
			country marked
			off for
			administrative,
			electoral or other
	Series and/or	Character	purposes It is the lowest
6		Character	
	Local Name		category in the
			system. The
			series is a
1			collection of soil
			individuals,
			essentially
			uniform in
1			differentiating
1			characteristics
			(like color,
			texture,
			structure,
			consistence) and
			in arrangement of
			horizons. It is the
			series which is
1			most useful for
1			making land use
			plans of a small
			area or agro
1			technology
1			transfer. The
L			

					corioc are pamod
					series are named after the
					geographic name
					of the place where
					it was first
					recognized or
					where they have
					wide extent of
					distribution.
7	Soil Mapping		Character		Soil mapping
	Legend				legend are those
					activities
					conducted in the
					field to organize,
					gather, describe
					and delineate
					data needed to
					provide current
					and accurate soil
					interpretations(in
					a coded manner)
8	Aerial Photo	API	Character		A method of
	Interpre-	Unit			studying terrain
	tation				by examining
					aerial
					photographs of it,
					involving
					detection and
					identification of
					the objects
					photographed,
					determination of
					their qualitative
					and quantitative
					characteristics
					and recording the
					results
					graphically,
					numerically and
					texturally.
9	Physiographic		Character		At the state level,
	Unit				based on geology,
					relief and land
1					use, the
					physiographic
					sub-divisions can
					be further sub-
					divided into
1					physiographic
					regions and
1					landforms.
10	Geology		Character		The geology map
	2000 97		2		of respective
1					states, districts
					can be used to
					identify the major
					rock types of the
1					
1					survey area.

14	Doront		Character	The
11	Parent Material	PM	Character	The loose unconsolidated
	Material			mineral material
				formed by the
				weathering of
				rocks, from which
				the soils form, is
				known as the
				parent material of
				the soil. It may be
				alluvium,
				colluviums,
				lacustrine,
				moraine, Aeolian,
				 etc.
	Alluvium	А	Character	Transported
				 material by water
	Colluvium	С	Character	Transported
				material by mass
				movement or
				gravity and local
	Aeolian	E	Character	 wash Transported
	Aeonan	E	Character	
	Granite	G	Character	 material by wind Residual or in
	Granite	G	Character	place or in-situ
				deposits.
	Gneiss	N	Character	Metamorphic
	Grieiss		ondidotor	rocks resulted
				from profound
				alteration of
				igneous and
				sedimentary
				rocks by heat and
				pressure
	Schist	S	Character	Metamorphic
				rocks resulted
				from profound
				alteration of
				igneous and
				sedimentary
				rocks by heat and
	Sandstone	D	Character	 pressure Sedimentary rock
	Januslune			formed by the
1				consolidation and
				compaction of
1				sand and held
		1		together by
				natural cement
		1		such as silica
	Basalt	В	Character	Residual or in
1				place or in-situ
				deposits.
	Limestone	L	Character	A common
		1		sedimentary rock
				consisting mostly
		1		of calcium
		1		carbonate used as

	1				
					a building stone and in the manufacture of lime, carbon dioxide and cement
Glacial	Т	Character			Material that has been moved and deposited by glacial processes. Glacial drifts consists of all of the material picked up, mixed, disintegrated, transported and deposited by glacial ice or by water from melting glaciers. Transported
Sediments Undifferen-	U	Character			Material by water
tiated Weathered	WB				Weathered basalt
					due to physical/ chemical processes or both
Gneiss	GN				A rock consist of an orthogenesis or paragneiss having the composition of granite
	Q				
					Climate encompasses the statistics of temperature, humidity, atmospheric pressure, wind, rainfall, atmospheric particulates and other meteorological elemental measurement in a given regions over long periods.
Humid	В	Character			Climate characterized by high rainfall and low evaporation potential.
Sub-humid (Moist)	Cm	Character			Regions where moisture is normally less
	Marine Sediments Undifferen- tiated Weathered basalt Granite/ Gneiss Quartzite Climate Humid	Marine SedimentsMUndifferen- tiatedUWeathered basaltWBGranite/ GneissGNQuartzite ClimateQClimateCHumidBSub-humidCm	Marine SedimentsMCharacterUndifferen- tiatedUCharacterWeathered basaltWBIIGranite/ GneissGNIIQuartzite ClimateQIIHumidBCharacterI	Marine SedimentsMCharacterUndifferen- tiatedUCharacterUndifferen- tiatedWBIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Glacial T Character Image: Character image: Chara

			1	
				than under
				humid conditions
				but still sufficient
				for the production
				of many
				agricultural crops
				without irrigation
				or dry- land
				farming.
	Sub-	Cd	Character	
		Cu	Character	Regions where
	humid(Dry)			climates are
				characterized by
				little rain and
				huge daily
				temperature
				range but still
				sufficient for the
				production of
				many agricultural
				crops
	Per-humid	А	Character	A type of climate
				which has
				humidity index
				values of + 100
				and above
	Semi-	Dm	Character	
		DIII	Character	In this ecosystem,
	arid(Moist)			the LGP ranges
				between 120 and
				150 days. The
				rainfall varies
				from 750 to 1000
				mm, a situation
				conductive to
				raise a single crop
				of short or
				medium duration.
	Semi-arid(dry)	Dd	Character	In this ecosystem,
	· · · · · · · · · · · · · · · · · ·			the LGP varies
				from 90 to 120
				days and the
				rainfall ranges
				from 500 to 700
1				mm, a situation
				conductive to
				raise a single crop
L				or short duration.
1	Typic-Arid	Et	Character	The typic arid
				ecosystem
1				represents
				conditions where
1				rainfall exceeds
1				0.5 PET for a
1				limited period but
				does not exceed
				the PET. The LGP
				in such
				conditions ranges
1				between 60 and 90 days.

	Hyper-Arid	Eh	Character				The hyper arid
	Пурег-Ана		Character				ecosystem is the
							one where rainfall
							is very scanty(less
							than 150mm)
							moisture index is
							less than -83.2
							and LGP<60+
							days.
13	Rainfall	R	Integer	mm	0	>3000	Indicate the
							average annual
							rainfall of the
-	Very low		Integer	mm	0	300	area in mm Average annual
	veryiow		integer	111111	0	300	rainfall ranging
							from 0 to 300 mm
-	Low		Integer	mm	300	500	Average annual
	2011		integer		000	000	rainfall ranging
							from 300 to 500
							mm
	Moderately low		Integer	mm	500	800	Average annual
	5						rainfall ranging
							from 500 to 800
							mm
	Moderate		Integer	mm	800	1000	Average annual
							rainfall ranging
							from 800 to 1000
	Madarataly		Integer		1000	1500	mm Average enquel
	Moderately High		Integer	mm	1000	1500	Average annual rainfall ranging
	riigii						rainfall ranging from 1000 to
							1500 mm
	High		Integer	mm	1500	2000	Average annual
			integer			2000	rainfall ranging
							from 1500 to
							2000 mm
	Very high		Integer	mm	2000	3000	Average annual
							rainfall ranging
							from 2000 to
							3000 mm
	Excessive		Integer	mm	>3000		Average annual
							rainfall more than
14	Topography		Character	Per cent			3000 mm The surrounding
14	ropography		Character	FEI CEIIL			land of the profile
							will normally have
							complex slopes
							and the terms
							used to describe
							the topography of
							the surrounding
							country are
							indicated below.
							In contrast to this
							only simple slopes
							are used to
							describe the
							location of the
							profile in the

						pedon description form.
	Level	Character	Per cent	0	1	Slope of the topography ranges from 0 to 1%
	Nearly Level	Character	Per cent	1	3	Slope of the topography ranges from 1 to 3%
	Undulating	Character	Per cent	3	8	Slope of the topography ranges from 3 to 8%
	Rolling	Character	Per cent	8	16	Slope of the topography ranges from 8 to 16%
	Hilly	Character	Per cent	16	30	Slope of the topography ranges from 16 to 30%
	Steep	Character	Per cent	30	60	Slope of the topography ranges from 30 to 60%
	Very Steep	Character	Per cent	>60		Slope of the topography is greater than 60%%
15	Landform type	Character				Any physical, recognizable feature on the Earth's surface, having a characteristic shape that is produced by natural processes and mappable at common survey scales.
	Marine landforms	Character				Beach, beach ridge, dunes, salt pans, swamp, coastal plain, island, gulf, marsh, etc
	Alluvial landforms	Character				Delta, alluvial fan, delta plain, flood plain, plain, etc.
	Inland and hilly landforms	Character				Mountains, mountain slope, mountain valley, hills, high hills, low hills, hill slope, peak, ridge, dyke, tors,

		1					1
							inselberg,
							escarpment, gorge, ravine,
							gorge, ravine, valley, etc.
16	Elevation	Eleva-	Integer	m	0	1000	Elevation refers to
	above MSL	tion					the height of a
							point on the
							earth's surface,
							relative to mean sea level. It can
							be determined
							from the
							topographic maps
							or by using a
							calibrated
							altimeter or by
							Global Positioning
17	Slope	SL	Character	Per cent	0	100	System (GPS). Slope gradient is
17	gradient	SL	Character	Per cent	0	100	the inclination of
	(%)						the surface of the
	()						soil from the
							horizontal. It
							indicates the
							direction of the
							surface water flow
							at the site. The difference in
							elevation between
							two points is
							expressed as a
							percentage of the
							distance between
							those points. The
							slope gradient is
							measured at the profile site by
							using Abney level
							and ranging rods.
	Level to nearly	а	Character	Per cent	0	1	0 to 35 mins
	level						abney level
							reading
	Very gently	b	Character	Per cent	1	3	35 min to 1
	sloping						degree 44 mins abney level
							abney level reading
	Gently sloping	С	Character	Per cent	3	8	1 degree 44 mins
	Source stopping				5		to 2 degrees 52
							mins abney level
							reading
	Moderately	d	Character	Per cent	8	15	2 degrees 52
	sloping						mins to 5 degrees
1							43 mins abney
	Modorataly		Character	Per cent	15	30	level reading
	Moderately steep	е	Character	Per cent	15	30	5 degrees 43 mins to 8 degrees 32
1	SICOP						mins abney level
1							reading
	Steeply sloping	f	Character	Per cent	30	50	8 degrees 32 mins
	0						

			1				ta 14 de mars 0
							to 14 degrees 3
							mins abney level reading
	Very steeply	g	Character	Percent	>50		14 degrees 3 mins
	sloping	9	Character	rereent	200		to 18 degrees 16
	sioping						mins abney level
							reading
18	Slope	SL	Integer	Length	0	>600	Slope length
	gradient			(m)			indicates the
							distance up to
							which there is no
							break in the
			Integer	m	0	50	slope. Slope gradient
			nneger		0	50	ranges from 0 to
							50 m
			Integer	m	50	150	Slope gradient
			5				ranges from 50 to
							150 m
			Integer	m	150	300	Slope gradient
							ranges from 150
			Lot a server		200	(00	to 300 m
			Integer	m	300	600	Slope gradient ranges from 300
							to 600 m
			Integer	m	>600		Slope gradient is
							greater than 600
							m
19	Erosion	е	Integer		0	100	The detachment
							and movement of
							soil materials
							from one place to another is known
							as soil erosion.
							Depending on the
							landscape
							position,
							vegetation and
							rainfall, soil
							erosion may be
							very slow or very rapid.
	None to very	e1	Integer				тарій.
	slight	01					
	Slight	e2	Integer				This class
							consists of soils
							that have lost
							some, but on the
							average less than 25 per cent, of the
							original A and /or
							E horizons or of
							the uppermost 20
							cm of the original
							A and/or E
							horizons if they
							were less than 20 cm thick.
	Moderate	e3	Integer				This class
	modelate	60	ппедег				unia ciass

				1		
						consists of soils
						that have lost, on
						the average, 25 to
						75 per cent of the
						original A and/or
						E horizons or of
						the upper most
						20 cm if the
						original A and/or
						E horizons were
						less than 20 cm
						thick.
	Severe	e4	Integer			This class
	000010	C I	integer			consists of soils
						that have lost, on
						the average, 75
						per cent or more
						of the original A
						and/or E
						horizons or of the
						uppermost 20 cm
						if the original A
						and/or E
						horizons were less
						than 20 cm thick.
						In most areas of
						class 3 erosion,
						material below
						the original A
						and/or E
						horizons is
						exposed at the
						surface in
						cultivated areas;
						the plough layer
						consists entirely
						of this material.
			linto no n		 	
	Very Severe		Integer			This class
						consists of soils
						that have lost all
						of the original A
						and/or E
						horizons or the
						uppermost 20 cm
						if the original A
						and/or E
						horizons were less
						than 20 cm thick.
						In addition, class
						4 includes loss of
						some or all of the
1						deeper horizons
						throughout most
						of the area.
20	Run-off		Character			Surface run-off or
						external soil
						drainage refers to
						the loss of water
						(includes both
L						

-			1		
	Ponded	Character			rainfall and water flowing from other or nearby soils) from an area by flow over the land surface. None of the water added to the soil as precipitation or by flow from
	Manualau	Oberester			surrounding areas escapes as run-off. This condition occurs normally in depressions.
	Very slow	Character			Surface water flows away very slowly that free water lies on the surface for long periods or enters immediately into the soil. In very slow condition, most of the water either passes through the soil or evaporates into the air. This condition is observed normally in level to nearly level areas or in very porous sandy soils
	Slow	Character			Surface water flows away slowly that free water lies on the surface for significant periods or enters rapidly into the soil. In very slow condition, large part of the water either passes through the soil or evaporates into the air. This condition is observed normally in nearly level or very gently sloping areas or in sandy soils. Normally there is little or no erosion hazard.

		· · · · · · · · · · · · · · · · · · ·		1	
	Medium	Character			Surface water
					flows away at
					such a rate that a
					moderate
					proportion of the
					water enters the
					soil and free
					water lies on the
					surface for only
					short periods. In
					this condition,
					large part of the
					rainfall is
					absorbed by the
					soil and used for
					plant growth. The
					erosion hazard
					may be slight to
					moderate when
					these soils are
					brought under
					cultivation.
	Rapid	Character			A large part of the
	Каріа				rainfall moves
					rapidly over the
					surface of the soil
					and a small part
					moves through
					the soil profile. In
					this condition,
					water runs off
					nearly as fast as
					it is added on the
					surface. Rapid
					runoff areas are
					observed normally
					in 19 moderately
					steep to steep
					areas and in soils
					with low
					infiltration
					capacity. The
				1	erosion hazard is
					normally
					moderate to high.
	Very Rapid	Character			A very large part
				1	of the rainfall
				1	moves rapidly
					over the surface
					of the soil and a
					very small part
					moves through
					the soil profile. In
				1	this condition,
				1	water runs off as
				1	fast as it is added
				1	on the surface.
					Rapid runoff
					areas are
		· · · · ·	1		

	1	1		1	
					observed normally in steep to very
					steep areas and
					in soils with low
					infiltration
					capacity. The
					erosion hazard is
					normally high or
					very high
21	Drainage	d	Character		Natural drainage
					class refers to the
					frequency and
					duration of wet
					periods under
					conditions similar
					to those under
					which the soil
					developed.
					Alteration of the
					water regime,
					either through
					drainage or
					irrigation, is not a
					consideration
					unless the
					alterations have
					significantly
					changed the
					morphology of the
					soil.
-	Very poorly		Character		Similar to poorly
	drained		onaracter		drained soils
	uranicu				except that the
					soils occur on level or depressed
					areas and are
					frequently
					ponded. The
					occurrence of
					internal free
					water is very
					shallow and
					persistent or
					permanent.
	poorly drained		Character		Water is removed
					so slowly that the
1					soil is wet at
1					shallow depths,
1					sometimes for
1					long periods.
					Water table is
					persistently
1					shallow, such
1					that most crops
					cannot be grown
					unless the soil is
	i .	1	1		artificially
					artificially
					drained.
	Somewhat		Character		

	poorly drained		a shallow depth for significant
			for significant periods during
			the growing
			season. Wetness
			restricts the
			growth of crops
			unless artificial
			drainage is
			provided. The
			soils commonly
			have a impervious
			layer, a high
			water table,
			additional water
			from seepage
			and/or nearly
			continuous
			rainfall.
	Moderately	Character	Water is removed
	well drained		from the soil
			somewhat slowly.
			Soil is wet for
			only a short time
			within the rooting
			zone during the
			growing season,
			but long enough
			that most
			mesophytic_crops
			are affected.
			These soils
			commonly have a
			slowly pervious
			layer within the
			upper one meter,
			periodically
			receive high
\vdash			rainfall, or both
	Well drained	Character	Water is removed
			from the soil
			readily but not
			rapidly. Water is
			available to plants
			throughout most
			of the growing
			season. Wetness
			does not inhibit
			growth of roots
			for most or all of
			the growing
			season.
	Somewhat	Character	Similar to
	Excessively		excessively
	drained		drained soils, but
			the water table
			may not be as
1			deep and the soil
			may be slightly

							fine textured
	Excessively		Character				Water is removed
	drained						from the soil very
							rapidly. Soil is
							commonly very
							coarse textured or
							rocky
22	Ground Water	GWD	Character	m	0	>10	Indicate the depth
	Depth						of water table and
	-						seasonal
							fluctuations of the
							profile site area.
							The water table
							measurement can
							be taken from the
							nearest open or
							borewells or by
							enquiring with
							farmers of the
							area
	Shallow		Character	m		<1	Ground water
							depth is less than
	N A - al - u - al - l				4		1 m
	Moderately		Character	m	1	2	Ground water
	Shallow						depth ranges from
	Madarataly		Character		2	5	1 to 2 m
	Moderately		Character	m	2	5	Ground water
	Deep						depth ranges from 2 to 5 m
	Doop		Character		5	10	Ground water
	Deep		Character	m	5	10	depth ranges from
							5 to 10 m
	Very Deep		Character	m	>10		Ground water
	very Deep		Character		>10		depth is greater
							than 10 m
23	Flooding		Character				Where ever
23	ribbullig		Character				records are
							available they can
							be collected and
							the frequency can
							be indicated and
							in other areas, it
							can be estimated
							based on the site
							characteristics
							and other
							converging
							evidences
	Nil	0	Character				
	Slight	1	Character				
	Moderate	2	Character				
	Severe	3	Character				
	Very Severe	4	Character				
24	Salinity	Sal	Integer	ECe	0	>50	A non sodic soil
				(dSm ⁻¹)			containing an
							excess of soluble
							salt (EC >4 dSm ⁻¹)
							that adversely

1			[offect plant
							affect plant growth and
							impair its
							productivity.
	Negligible	SO	Integer		1	2	Salinity ranges
						_	from 1 to 2
							ECe(dSm ⁻¹)
	Slight	S1	Integer		2	4	Salinity ranges
							from 2 to 4
							ECe(dSm ⁻¹)
	Moderate	S2	Integer		4	8	Salinity ranges
							from 4 to 8
						15	ECe(dSm ⁻¹)
	Moderately	S3	Integer		8	15	Salinity ranges
	Strong						from 8 to 15 ECe(dSm ⁻¹)
	Strong	S4	Integer		15	25	Salinity ranges
	Strong	54	nneger		15	23	from 15 to 25
							ECe(dSm ⁻¹)
	Severe	S5	Integer	1	25	50	Salinity ranges
			- 3		-		from 25 to 50
							ECe(dSm ⁻¹)
	Very Severe	S6	Integer		>50		Salinity is greater
							than 50 ECe(dSm ⁻
			-				1)
25	Sodicity	Sod	Float	Per cent	0	40	A soil containing
							sufficient amount
							of exchangeable sodium that
							adversely affects
							crop production
							and soil structure
							under most
							conditions of soil
							and plant type.
	Negligible	NO	Float	Per cent	0	5	Sodicity ranges
							from 0 to 5%
	Slight	N1	Float	Per cent	5	15	Sodicity ranges
							from 5 to 15%
	Moderate	N2	Float	Per cent	15	25	Sodicity ranges
	Strong	N3	Floot	Per cent	25	40	from 15 to 25%
	Strong	113	Float	Per cern	20	40	Sodicity ranges from 25 to 40%
	Severe	N4	Float	Per cent	>40		Sodicity is greater
		1117	i ioat		240		than 40%
26	Surface		Float	Per cent	0	>40	The approximate
	Stoniness				-		amount of stones
							and boulders
							present at the
							surface has to be
							assessed
							separately and
	Clickt			Domest		1 [reported
	Slight		Float	Per cent	0	15	Stoniness ranges
	Moderate		Float	Per cent	15	40	from 0 to 15 % Stoniness ranges
	ואוטעכו מנפ		i iudi	FEICEIII	10	40	from 15 to 40 %
	Strong		Float	Per cent	>40		Stoniness is
1	Subig		i iout		~ = U	1	0.01111000010

					greater than 40%
Stoniness	Float	% Surf. cover	0	>75	The approximate amount of stones and boulders present at the surface has to be assessed separately and reported
				<3	Stoniness is less than 3% surface cover
			3	15	Stoniness ranges from 3 to 15% surface cover
			15	40	Stoniness ranges from 15 to 40% surface cover
			40	75	Stoniness ranges from 40 to 75% surface cover
			>75		Stoniness is greater than 75% surface cover
27 Rock Outcrops		М	<2	>90	The distance (m) between the rock outcrops and their percentage coverage in the field is to be recorded.
			<2		No rocks or very few rocks to interfere with tillage
			2	10	Fairly rocky, sufficient to interfere with tillage but not to make inter-tilled crops impracticable. Exposures are roughly 35 to 100 m apart.
			10	25	Rocky, sufficient to interfere with tillage of inter-tilled crops impracticable. Exposures are roughly 10 to 35 m apart
			25	50	Very rocky, sufficient to make all use of machinery impracticable, except for light machinery. Exposures are roughly 3.5 to 10 m apart.
			50	90	Extremely rocky, sufficient rock outcrops to make

r					1	
						all use of machinery
						impracticable.
						Exposures are
						about 3.5 m apart or less.
				>90		Rock outcrops
28	Natural					The type of
	Vegetation					vegetation
	regetation					observed should
						be described first
						in simple terms,
						like evergreen,
						deciduous or
						shrub forests,
						grasslands, etc.,
						and then their
						common names
						and their species
						names wherever
						possible.
						Generally, a close
						relationship exists
						between native
						vegetation and
						kinds of soil. The
						growth and stand
						(canopy) of native
						vegetation and
						cultivated crops
						will be of great
						help in
						recognizing soil
						boundaries. Even
						within a field,
						differences of
						vigour, stand, or
						colour of the crop
						or of weeds
						commonly mark
						soil differences
						and as such are valuable clues to
						the location of soil
						boundaries in the
						field to the
						surveyor.
29	Crop Yield	Float	Kg\hect			Crop yield is not
		- i loat	-are			only a measure of
						the yield of per
						unit area of land
						under cultivation,
						yield is also the
						seed generation of
						the plant itself
30	Present Land	Character				Indicate the name
	Use					of the crop/crops
						(common names
						like bajra, ragi
						etc. are preferred)
		• •	•	•	•	

				1		
						cultivated in the current season
						and wherever
						possible the crops
						cultivated in the
						previous season,
						if they are
						different from the
						present one. Also
						provide the
						approximate
						yield\ha and
						management level
						(low, medium or high) followed by
						the farmer for the
						major crops
						cultivated. If the
						crop is irrigated,
						indicate the
						method of
						irrigation and
						indicate the major and minor crops
						if it is a mixed
						one.
a)	Forest		Character			Forest is defined
,						as an ecosystem
						or assemblage of
						ecosystems
						dominated by
						trees and other
	Forest with no	FO	Character			woody vegetation
	canopy					
	Thin Forest	F1	Character			
	sparse					
	vegetation Moderately	F2	Character			
	densed forest	12	Character			
	and fully					
	stocked					
	Densed forest	F3	Character			
	fully stocked					
	with top					
ل ا	canopy Cultivated		Character			Dropara and usa
b)	Cultivated		Character			Prepare and use land for crops or
						gardening
	Cultivated	C1	Character			Prepare and use
	single crop					land for single
	. .					crop
	Cultivated	C2	Character			A form of multiple
	double crop					cropping in which
						two crops are
						grown on a field at different times
						of the year
	Cultivated	C3	Character			Growing 3 crops a
I				1	1	

	triple crop			year in sequence
C)	Terraces		Character	A porch or
				walkway bordered
				by colonnades
	Poorly bunded	T1	Character	An outer wall or
	, i i i i i i i i i i i i i i i i i i i			tank not well
				designed to retain
				the contents of an
				inner tank in the
				event of leakage
				or spillage
	Poorly terraced	T2	Character	A porch or
	, i i i i i i i i i i i i i i i i i i i			walkway that is
				not well bordered
				by colonnades
	Benched	Т3	Character	Benched terraced
	terraced			are a series of
				level or virtually
				level strips
				running across
				the slope at
				vertical intervals
				supported by
				steep bank or
				risers
d)	Pasture land		Character	Land suitable for
				grazing
	Pasture and	Р	Character	A field covered
	grazing land			with grasses or
	5 5			herbage and
				suitable for
				grazing by
				livestock
	Hay Land	Н	Character	These lands are
	5			also used for
				grazing
e)	Degraded		Character	It is concept in
,	culturable			which the value of
				the biophysical
				environment is
				affected by one or
				more combination
				of human induced
				processes acting
				upon the land
	Gullied and	1	Character	The gullies are
	/or ravenous			formed as a result
	land			of localized
				surface run-off
				affecting the
				friable
				unconsolidated
				material in the
				formation of
				perceptible
				channels
				resulting in
				undulating
				terrain. The
L			1	

			1		gullies are the
					5
					first stage of excessive land
					dissection
					followed by their
					networking which
					leads to the
					development of
					ravenous land.
	Undulating	2	Character		
	upland with or				
	without scrub				
	Surface	3	Character		
	waterlogged	0	ornaraotor		
	and marsh				
	Salt affected	4	Character		
	land	4	Character		
		5	Character		
	Shifting	С	Character		
	cultivation				
	area				
	Degraded	6	Character		
	forest land				
	Degraded	7	Character		
	pastures/graz-				
	ing land				
	Degraded non-	8	Character		
	forest				
	plantation				
	land				
	Strip lands	9	Character		
	Strip lands Sands	9 10	Character Character		
	Sands	10	Character		
	Sands Mining				
	Sands Mining industrial	10	Character		
f)	Sands Mining industrial waste lands	10	Character Character		
f)	Sands Mining industrial waste lands Degraded	10	Character		
f)	Sands Mining industrial waste lands Degraded unculturable	10	Character Character		
f)	Sands Mining industrial waste lands Degraded unculturable land	10 11	Character Character Character		
f)	Sands Mining industrial waste lands Degraded unculturable land Barren and	10	Character Character		
f)	Sands Mining industrial waste lands Degraded unculturable land Barren and rocky or stony	10 11	Character Character Character		
f)	Sands Mining industrial waste lands Degraded unculturable land Barren and rocky or stony waste or sheet	10 11	Character Character Character		
f)	Sands Mining industrial waste lands Degraded unculturable land Barren and rocky or stony waste or sheet rock area	10 11 A	Character Character Character Character		
f)	Sands Mining industrial waste lands Degraded unculturable land Barren and rocky or stony waste or sheet rock area Steep sloping	10 11	Character Character Character		
f)	Sands Mining industrial waste lands Degraded unculturable land Barren and rocky or stony waste or sheet rock area Steep sloping area	10 11 A B	Character Character Character Character Character		
f)	Sands Mining industrial waste lands Degraded unculturable land Barren and rocky or stony waste or sheet rock area Steep sloping area Snow covered	10 11 A	Character Character Character Character		
f)	Sands Mining industrial waste lands Degraded unculturable land Barren and rocky or stony waste or sheet rock area Steep sloping area Snow covered and/or glacial	10 11 A B	Character Character Character Character Character		
	Sands Mining industrial waste lands Degraded unculturable land Barren and rocky or stony waste or sheet rock area Steep sloping area Snow covered and/or glacial area	10 11 A B	Character Character Character Character Character Character		
f)	Sands Mining industrial waste lands Degraded unculturable land Barren and rocky or stony waste or sheet rock area Steep sloping area Snow covered and/or glacial	10 11 A B	Character Character Character Character Character		It deals with the
	Sands Mining industrial waste lands Degraded unculturable land Barren and rocky or stony waste or sheet rock area Steep sloping area Snow covered and/or glacial area	10 11 A B	Character Character Character Character Character Character		It deals with the systematic
	Sands Mining industrial waste lands Degraded unculturable land Barren and rocky or stony waste or sheet rock area Steep sloping area Snow covered and/or glacial area	10 11 A B	Character Character Character Character Character Character		systematic
	Sands Mining industrial waste lands Degraded unculturable land Barren and rocky or stony waste or sheet rock area Steep sloping area Snow covered and/or glacial area	10 11 A B	Character Character Character Character Character Character		systematic
	Sands Mining industrial waste lands Degraded unculturable land Barren and rocky or stony waste or sheet rock area Steep sloping area Snow covered and/or glacial area	10 11 A B	Character Character Character Character Character Character		systematic categorization of soils based on
	Sands Mining industrial waste lands Degraded unculturable land Barren and rocky or stony waste or sheet rock area Steep sloping area Snow covered and/or glacial area	10 11 A B	Character Character Character Character Character Character		systematic categorization of soils based on distinguishing
	Sands Mining industrial waste lands Degraded unculturable land Barren and rocky or stony waste or sheet rock area Steep sloping area Snow covered and/or glacial area	10 11 A B	Character Character Character Character Character Character		systematic categorization of soils based on distinguishing characteristics as
	Sands Mining industrial waste lands Degraded unculturable land Barren and rocky or stony waste or sheet rock area Steep sloping area Snow covered and/or glacial area	10 11 A B	Character Character Character Character Character Character		systematic categorization of soils based on distinguishing characteristics as well as criteria
	Sands Mining industrial waste lands Degraded unculturable land Barren and rocky or stony waste or sheet rock area Steep sloping area Snow covered and/or glacial area	10 11 A B	Character Character Character Character Character Character		systematic categorization of soils based on distinguishing characteristics as well as criteria that dictate
31	Sands Mining industrial waste lands Degraded unculturable land Barren and rocky or stony waste or sheet rock area Steep sloping area Snow covered and/or glacial area Classification	10 11 A B	Character Character Character Character Character Character Character		systematic categorization of soils based on distinguishing characteristics as well as criteria that dictate choices in use
	Sands Mining industrial waste lands Degraded unculturable land Barren and rocky or stony waste or sheet rock area Steep sloping area Snow covered and/or glacial area	10 11 A B	Character Character Character Character Character Character		systematic categorization of soils based on distinguishing characteristics as well as criteria that dictate choices in use A sub-division of
31	Sands Mining industrial waste lands Degraded unculturable land Barren and rocky or stony waste or sheet rock area Steep sloping area Snow covered and/or glacial area Classification	10 11 A B	Character Character Character Character Character Character Character		systematic categorization of soils based on distinguishing characteristics as well as criteria that dictate choices in use

		-			CC 1 11
					affect its use and management.
	Surface		Character		The outer face,
					outside or exterior
					boundary of a
					thing.
	Sub -stratum		Character		Any underlying
					layer
33	Land		Character		A system of
	Capability				classifying the
	Class				land according to
					its capability for
					practical land use (Klingebiel and
					Montogomery
					1961).
		Class-I	Character		Few limitations
		01033-1	Character		restrict their use
		Class-II	Character		Moderate
					limitations reduce
					choice of plants
					or require
					moderate
					conservation
					practices
		Class-	Character		Severe limitations
		111			reduce choice of
					plants or special
					conservation
					practices are
		Class	Character		required
		Class- IV	Character		Very severe limitations
		IV			restrict choice of
					plants; special
					conservation
					practices are
					required.
		Class-V	Character		Not suited to
					cultivation ,little
					to no erosion
					hazard, but
					limitations that
					limit their use to
L				 	pasture
		Class-	Character		Severe limitations
		VI			that make them
					generally unsuitable for
					agriculture and
					limit their use to
					pasture and
					range
		Class-	Character		Very severe
		VII			limitations make
					them unsuitable
					for cultivation
					and restrict their
					use.

		Class-	Character	Unsuitable for
		VIII	Character	any commercial
				plant production.
34	Land		Character	To evaluate the
54	Irrigability		Character	suitability of the
	Class			mapped soils for
	01033			the sustained use
				under irrigation,
				for making such a
				kind of
				interpretation(of
				soil and land
				conditions) one is
				concerned with
				predicting the
				behavior of soils
				under greatly altered water
				regimes brought
				about by
				introducing
				irrigation
				(AISLUS, 1971)
		Class-I	Character	Suitable for
		Class-I	Character	irrigated
				agriculture
		Class-II	Character	Suitable for
		Class-11	Character	irrigated
				agriculture
		Class-	Character	Suitable for
			Character	irrigated
				agriculture
		Class-	Character	Not irrigable,
		IV	Character	except under
		1.0		special condition
		Class-V	Character	Undetermined
		Class-V	Character	Suitability for
				irrigation
		Class-	Character	Non irrigable
		VI	Character	Non in igable
35	Important	VI	Character	
55	Crops		Character	
	Cereals		Character	A grain used for
	ocreats		onlandeter	food such as
				wheat, oats or
				corn
	Oilseeds		Character	Any of several
1				seeds that yield
				oil
	Cash Crops	1	Character	Cash crops
				consists of foods
				like tobacco,
1				sugarcane
<u> </u>	Horticultural	1	Character	The crops mainly
1	crops			grown for their
	0,000			fruits
	Plantation		Character	Grown for their
1	crops			economic value
L	0,003		I	

36	Management Practices		Character		
	Low		Character		Management practices by farmers/No inputs
	Medium		Character		
	High		Character		Optimum management /Recommended inputs
37	Suitability Class		Character		A set of classes for evaluating land suitability. The FAO system consist of three levels of classification suitable(S) or not suitable (N); degree of suitability.
	Suitable	S1	Character		Land having no significant limitations to sustained application of a given use or only minor limitations that will not significantly reduce productivity or benefits and will not raise inputs above an acceptable level
	Moderately Suitable	S2	Character		Land having limitations which in aggregate are moderately severe for sustained application of a given use, the limitations will reduce productivity or benefits and increase required inputs to the extent that the overall advantage to be gained from the use, although still attractive, will be appreciably inferior to that expected on class

				S1 land
Marginally Suitable	S3	Character		Land having limitations which in aggregate are severe for sustained application of a given use, will reduce productivity or benefits or increase required inputs, that this expenditure will be only marginally justified
Actually unsuitable but potentially suitable	N1	Character		Land having limitations which may be surmountable in time but which cannot be corrected with existing knowledge at currently acceptable cost, the limitations are so severe as to preclude successful sustained use of the land in the given manner
Actually and potentially unsuitable	N2	Character		Land having limitations which appear so severe as to preclude any possibilities of successful sustained use of the land in the given manner

3.2.2 Soil morphological parameters

Soil morphology refers to the inherent characteristics of the soils acquired during their evolution and retaining impress of one or several genetic factors. This comprises of the evaluation and description of the soil colour, texture, structure, consistence, presence or otherwise of pans, concretions and such other features of horizons of soil profiles as can be perceived in the field. Description of such and related characteristics necessitates standards terminology, notation and defined symbols to be followed by the field soil surveyors and recorded in the appropriate field sheets or field note books. The soil morphological parameters and their detailed description are shown in table 2.

S.No	Data Element Name	Short Name	Data Type	Unit Of Measure	Minimum value	Maximum Value	Description
1	Horizon	Н	Character				Horizon development indicates the extent and degree of soil genesis. It varies widely from soil to soil. In the early stages of soil formation, horizon development may be weak.
	Organic Horizon	0	Character				This layer is dominated by organic material. They consist of undecomposed or partially decomposed litter, deposited on the surface of either mineral or organic soils. The O layer may be present on the surface of a mineral soil or at any depth beneath the surface, if it is buried. A horizon formed by illuviation of organic material into mineral subsoil is not considered as an O horizon.
	Mineral Horizon	A	Character				It is a mineral horizon formed at

Table 2: Soil morphological parameters and their description

 1			
			the surface or below
			O horizon. They
			exhibit obliteration
			of all or much of the
			original rock
			structure and show
			an accumulation of
			humified organic
			matter intimately
			mixed with the
			mineral fraction.
			This horizon is not
			dominated by
			properties of either
			E or B horizons or
			properties resulting
			from cultivation,
			pasturing, or similar
			kinds of
			disturbance.
Mineral	E	Character	Mineral horizon in
Horizon			which the main
			feature is loss of
			silicate clay, iron,
			aluminum, or some
			combination of
			these, leaving a
			concentration of
			sand and silt
			particles. These
			horizons exhibit
			obliteration of all or
			much of the original
			rock structure. This
			horizon is usually
			lighter in colour
			than B and A
			horizons. The
			organic matter is
			normally less than A
			horizon and occurs
			commonly near the
			surface (below O or
			A horizon and above
			B horizon).
N Alia a real		Ob area d	
Mineral	В	Character	Horizons that
Horizon			formed below an A,
			E, or O horizon and
			are dominated by
			obliteration of all or
			much of the original
Mineral		Changeter	rock structure.
Mineral	С	Character	Horizons or layers,
Horizon			excluding hard
			bedrock, that are
			little affected by
			pedogenic processes
			and lack properties
			of O, A, E, or B

mate may unli whice person The	ch the solum
may unli whice pers The	be either like or ke that from ch the solum
unli whice pers The	ke that from ch the solum
whice person the second s	ch the solum
pers The	
The	sumably formed
	sumably formed.
	C horizon may
	e been modified
	n if there is no
	ence of
	ogenesis.
Bed Rock R Character The	
	iciently coherent
whe	n moist to make
han han	d digging with a
space spac	de impractical,
	ough it may be
	oped or
	pped.
	depth indicates
	depth of the
solu	
	udes A and B
	zons, occurring
	ve the parent
	erial or hard
rock	
	isured from the
	surface.
	depth ranging
	n 0 to 10 cm
	depth ranging
Shallow from	n 10 to 25 cm
	depth ranging
	n 25 to 50 cm
	depth ranging
	n 50 to 75 cm
Shallow	
	depth ranging
	n 75to 100 cm
	depth ranging
	n 100 to 150 cm
	depth > 150 cm
3 Boundary Character A t	ransitional area
or	layer present
betw	veen two
adjo	ining horizons
	ayers is known
	the boundary.
	ndaries vary in
	inctness
	itrast) and in
	ography.

a)	Distinctness	D	Character				Distinctness is the distance through which one horizon grades into another. It refers to the thickness of the zone within which the boundary can be located. The distinctness depends on the degree of contrast between the layers and thickness of the transitional zone. Distinctness is defined in terms of thickness of the transitional zone
	Abrupt	а	Character	cm	0.5	<2	Boundary ranges from 0.5 to less than 2 cm
	Clear	С	Character	cm	2	<5	Boundary ranges from 2 to less than 5 cm
	Gradual	g	Character	cm	<5	15	Boundary ranges from less than 5 to 15 cm
	Diffuse	d	Character	cm	>15		Boundary is greater than 15 cm
b)	Topography	Т	Character				Topography is the lateral undulation and continuity of the boundary between horizons. Topography refers to the irregularities of the surface that divides the horizons
	Smooth	S	Character				The boundary is a plane one with few or no irregularities
	Wavy	W	Character				The boundary has undulations in which depressions are wider than they are deep.
	Irregular	i	Character				The boundary has pockets that are deeper than they are wide
	Broken	b	Character				Discontinuous horizons ; discrete but intermingled , or irregular pockets
4	Diagnostic Horizon		Character				This column is to be filled after thorough examination of the soil profile. Identify

C)	Contrast	С	Character				Contrast refers to the degree of visual
	Coarse	3	Character		>15		Coarse – larger than 15 mm.
	Medium	2	Character		5	15	Medium – 5 to 15 mm.
	Fine	1	Character		F	<5	Fine – smaller than 5 mm.
b)	Size	S	Character	mm			20 % of exposed surface Size refers to dimensions as seen on a plane surface. If the length of a mottle is not more than 2 or 3 times the width, the dimension recorded is the greater of the two. If the mottle is long and narrow, as a band of colour at the periphery of a ped, the dimension recorded is the smaller of the two and the shape and location are also described.
	Many	m	Character		>20		of exposed surface Many-greater than
	Common	С	Character		2	20	of exposed surface Common-2 to 20 %
4	Few	f	Character			<2	Few-Less than 2 %
a)	Abundance	A	Character				soil.
6	Rubbed Mottle Color	r	Character Character				Mottle color refers to repetitive color changes that cannot be associated with compositional properties of the
	Moist	m	Character				
5	Matrix Colour Dry	d	Character				the type of the diagnostic horizon present in the soil and their upper and lower boundaries Soil colours are measured in the field by comparing peds with Munsell colour chart. The notation is recorded in the form: hue, value and chroma.

					tinction that is
					dent between
	E a limit	£	Chanastan		sociated colours.
	Faint	f	Character		ident only an
					se examination,
				fai	
					mmonly have the
					me hue as the
					our to which they
					e compared and
					fer by no more
					an 1 unit of
					roma or 2 units of
					ue. Some faint
					ottle of similar but
					v chroma and
					ue differ by 2-5
	D 1 1 1				its of hue.
	Distinct	d	Character		adily seen but
					ntrast only
					derately with the
					our to which they
				are	
					stinct mottles
					mmonly have the
					ne hue as the
					our to which they
					e compared but
					fer by 2 to 4 units
					chroma or 3 to 4
					its of value, or
					fer from the color
					which they are
					mpared by 2.5
					its (one card) of
					e but by no more
					an 1 unit of
					roma or 2 units of
	Deserve	-	Character		ue.
	Prominent	р	Character		ntrast strongly
					h the colour to
					ich they are
					npared.
					ominent mottles
					e commonly the
					ost obvious color
					ture of the
					ction described.
					ominent mottles
					at have medium
					roma and value
					nmonly differ m the color to
					ich they are
					npared by the
					st 5 units of hue
					chroma and value
					e the same at
				lea	st 4 units of

			1	
				value or chroma if the hue is the same or at least 1 unit of chroma or 2 units of value if hue differs by 2.5 units.
7	Texture		Character	Soil texture refers to the relative proportion (per cent by weight) of sand, silt and clay present in a soil. Texture is estimated in the field by feel method or quantitatively measured in the laboratory by hydrometer or pipette method. Soil texture includes only the fine earth fraction (< 2 mm, like sand, silt and clay). The texture classes range from sand to clay and some of the commonly occurring texture
	sand	S	Character	More than 85 % sand , the percentage of silt plus 1.5 times the % of clay is not more than 15
	loamy sand	ls	Character	Between 70 and 91 % sand and the percentage of silt plus 1.5 times the percentage of clay is 15 or more, and the percentage of silt plus twice the percentage of clay is < 30
	sandy loam	sl	Character	7 to 20 % clay , > 52 % sand , and the percentage of silt plus twice the percentage of clay is 30 or more; or less than 7 % clay, < 50 % silt, and > 43 % sand
	loam	I	Character	7 to 27 % clay, 28 to 50 % silt and less than 52 % sand
	silt loam	sil	Character	50 % or more silt and 12 to 27 % clay,

	silt sandy clay loam clay loam silty clay loam sandy clay	si scl cl sicl sc	Character Character Character Character Character			or 50 to 80 % silt and less than 12 % clay 80 % or more silt and less than12 % clay 20 to 35 % clay , less than 28 % silt, and 45 % or more sand 27 to 40 % clay and more than 20 to 46 % sand 27 to 40 % clay and less than 20 % sand 35 % or more clay and 45 % or more sand
	silty clay	sic	Character			40 % or more clay and 40 % or more silt
	clay	С	Character			40% or more clay, < 45% sand and < 40 % silt
8	Coarse fragments		Character	Per- cent		This refers to the presence of coarse fragments (>2 mm in size) on or near the soil surface. The classes used are pebbles, cobbles, stones and boulders. Gravel is a collection of pebbles that have diameters ranging from 2 to 75 mm. The size of the cobbles range from 23 75 to 250 mm (3 to 10 inches), stones from 250 to 600 mm (10 to 24 inches) and boulders above 600 mm (>24 inches). Assessment for the surface fragments is done separately for the gravel and for stones and boulders. Indicate the size of the fragments observed in the field.
	fine gravel	fg	Character		<2.5	The coarse fragments that have diameters less than 2.5 cm

	coarse	cg	Character		2.5	7.5	The coarse
	gravel	cg	ondracter		2.0	7.5	fragments that have diameters ranging from 2.5 to 7.5 cm.
	stone	st	Character		7.5	25	The coarse fragments that have diameters ranging from 7.5 to 25 cm.
9	Structure		Character				The arrangement of primary soil particles into aggregates is known as structure in soils. The individual structural unit is called as ped.
	Size	S	Character	mm			The size limits of the classes differ according to shape of units.
	Vanyfina	, ef	Character		<1	>=10	Granular/palty <1
	Very fine	vf	Character				<1
	Fine	f	Character				1 to <2
	Medium	m	Character				2 to <5
	Coarse	С	Character				5 to <10
	Very coarse	VC	Character				>=10
					<5	>=50	Angular/sub angular
	Very fine	vf	Character				<5
	Fine	f	Character				5 to <10
	Medium	m	Character				10 to <20
	Coarse	С	Character				20 to 50
	Very coarse	VC	Character				>=50
					<10	100 to <500	Prismatic/columnar
	Very fine	vf	Character				<10
	Fine	f	Character				10 to <20
	Medium	m	Character				20 to <50
	Coarse	С	Character				50 to <100
	Very coarse	VC	Character				100 to <500
	Grade	G	Character				Degree of ped development in soil
	structure	0	Character				Has no observable

1			,		
less					aggregation or no definite orderly arrangement of natural lines of weakness such as massive structure or single grain structure
boulder	b	Character		>25	The coarse fragments that have diameters more than 25 cm
weak	1	Character			The units are barely observable in place. When gently disturbed, the soil material parts into a mixture of whole and broken units and most of the material that exhibit no planes of weakness. Differentiating structureless from weak structure is sometimes difficult.
moderate	2	Character			The units are well formed and evident in undisturbed soil. When disturbed, the soil material parts into a mixture of mostly whole units, some broken units, and material that is not in units.
strong	3	Character			The units are distinct in undisturbed soil. They separate when the soil is disturbed. When removed, the soil material separates mainly into whole units. Peds have distinctive surface properties
Туре	Т	Character			
granular	gr	Character			The units are approximately spherical or polyhedral and are bounded by curved or very irregular faces that are not casts of adjoining peds.

	crumb	or	Character	Are individual
	crumb	cr	Character	
				particles of sand, silt and clay
				grouped together in small, nearly
				spherical grains.
				Water circulates
				very easily through
				such soils. They are
				commonly found in
				the A-Horizon of the
				soil profile.
	columnar	cpr	Character	The units are
				similar to prisms
				and are bounded by
				flat or slightly
				rounded vertical
				faces. The tops of
				columns are very
				distinct and
				normally rounded
	prismatic	pr	Character	Vertically elongated
				units with flat tops,
				the individual units
				are bounded by flat
				to rounded vertical
				faces
	platy	pl	Character	The units are flat
				and plate like and
				horizontally oriented
	angular	abk	Character	The cubes have
	blocky			sharp edges and
				distinct rectangular
			÷	faces
	sub angular	sbk	Character	If the faces are a
	blocky			mixture of rounded
				and plane faces and
				corners are mostly
				rounded
	single grain	sg	Character	(non-coherent)where
				the individual soil
				particles show no
				tendency to cling
				together such as
				pure sand
	massive	m	Character	(coherent) where the
				entire soil horizon
				appears cemented in
				one great mars.
10	Consistence		Character	Soil consistence
				refers to the degree
				and kind of
				cohesion and
				adhesion and/or the
				resistance of soil to
				deformation or
1			1	rupture when stress
	Dry	D	Character	is applied.

loose		Character	Intact specimen not
			available
soft	S	Character	Very slight force between fingers
slightly hard	sh	Character	Slight force between fingers
hard	h	Character	Strong force between fingers
very hard	vh	Character	Moderate force between hands
extremely hard	eh	Character	Foot pressure by full body weight
Moist	М	Character	
loose	1	Character	Intact specimen not available
very friable	vfr	Character	Very slight force between fingers
friable	fr	Character	Slight force between fingers
firm	fi	Character	Moderate force between fingers
very firm	vfi	Character	Strong force between fingers
extremely firm	efi	Character	Moderate force between hands
Wet	W	Character	
non-sticky	SO	Character	After release of
			pressure, practically no soil material adheres to fingers
slightly sticky	SS	Character	Soil adheres to both fingers, after release of pressure. Soil stretches little on separation of fingers
sticky	S	Character	Soil adheres to both fingers, after release of pressure. Soil stretches some on separation of fingers
very sticky	VS	Character	Soil adheres firmly to both fingers, after release of pressure. Soil stretches greatly on separation of fingers.
non-plastic	ро	Character	Will not form a 6 mm diameter roll, or if formed, cannot support itself if held on end.
slightly plastic	ps	Character	6 mm diameter roll supports itself, 4 mm diameter roll does not.
plastic	р	Character	4 mm diameter roll supports itself, 2

						mm diameter roll
						does not.
	very plastic	vp	Character			2 mm diameter roll supports itself with
						its weight
11	Porosity		Character			Porosity is used to
	5					represent aeration,
						water storage
						capacity, plant
						wilting point and
						drainage
	Size	S	Character			
	very fine	vf	Character			
	fine	f	Character			
	medium	m	Character			
	coarse	С	Character		_	
	Quantity	Q	Character			
	few	f	Character			
	common	C	Character			
12	many Cutans	m	Character Character			Cutans are the
12	Cutans		Character			Cutans are the coatings or deposits
						of material on the
						surface of peds,
						stones , etc.
	Туре	Ту	Character			3101103 / 010.
	Argillan	T	Character			
	ferran	Fe	Character			
	Mangan	Mn	Character			
-	Organ	0	Character			
	Thickness	Th	Character			
	thin	tn	Character			
	moderately thick	mtk	Character			
	thick	tk	Character			
	Quantity	Q	Character			
	patchy	р	Character			
	broken	b	Character			
	continuous	С	Character			
13	Nodules		Character			Nodules are
						cemented bodies of
						various shapes
						(commonly spherical or tubular) that can
						be removed as
						discrete units from
						soil. Crystal
						structure is not
						discernible with IOX
						hand lens.
	Size	S	Character			
	very fine	vf	Character			
	fine	f	Character			
	medium	m	Character			
	coarse	С	Character			
	Quantity	Q	Character			
	few	f	Character		+	
	common	С	Character			

	many	m	Character				
14	Roots		Character				Quantity, size, and
							location of roots in
							each layer are to be
							recorded in the
							proforma. Any other
							features like root
							length, nodulation,
							and the
							relationships to
							special soil
							attributes or to
							structure may be
							recorded as notes in
							the field book.
	Size	S	Character	mm		1	Deste size is less
	very fine	vf	Character			<1	Roots size is less than 1 mm
	fine	f	Character	-	1	2	
	IIIIe	I	Character		I	2	Roots size ranges from 1 to 2 mm
	medium	m	Character		2	5	Roots size ranges
		111			2	5	from 2 to 5 mm
	coarse	С	Character		5	10	Roots size ranges
							from 5 to 10 mm
	Quantity	Q	Character	Per unit			Quantity of roots is
				area			described in terms
							of numbers of each
							size per unit area.
	few	f	Character		1	<1	
	common	С	Character		1	5	
15	many Effervescen	m	Character		>5		The gaseous
15	ce(with		Character				The gaseous response (seen as
	dilute HCL)						bubbles) of soil to
	unute HCL)						applied HCI
							(carbonate test),
							H_2O_2 (MnO2 test), or
							other chemicals.
							Normally, cold dilute
							(about 1:10 dilution)
							hydrochloric acid is
							used to test the
							presence of
							carbonates in the
							field.
	slight effervescence	е	Character				bubbles readily seen
	Strong effervescence	es	Character				bubbles form low foam
	violent	ev	Character				thick foam forms
	effervescence						quickly
16	Other		Character				Presence of
	Features						Animals
	(slickensides/ Pressure face,						Mixing, changing
	etc.)						and moving of soil
							I material by animals
	610.)						material by animals
	610.)						affect some properties of soils.

17 Sample Bag 11 Soil 11 Soil 11 Soil 11 Soil 11 Soil 11 Soil 11 Soil<		1		
Image be described. Image describel. Image describel. Image describel.				The features seen on
Ikk the presence of each state Termite mounds, ant hills, heaps of excavated each beside burrows, the openings of burrows, paths, feeding grounds, earthworm or other castings, and other traces, on the surface as special notes or in the proforma. The features produced by animals in the soil are described by using common words. Krotovinas - They are irregular tubular the soil are described by using common words. Krotovinas - They are irregular tubular the soil are described by using common words. Krotovinas - They are caused by the filling of tunnels made by burrowing animals in one layer of material transported from another layer. They are caused by the filling of tunnels made by burrowing animals in one layer is or various sizes. Stone line - A natural concentration of various sizes. Concord fragments caused by fluxial action or other transport agents, if present in the soil is to identified and described. It may be quartz or other types and the depth of its occurrence can be noted. Tongues of argillic material, seen in some soils needs to describe.				
Tremite mounds, send hills, heaps of excavated earth beside burrows, the openings of burrows, paths, feeding grounds, earthworm or other castings, and other traces on the surface as special notes or in the proforma. The features produced by animals in the soil are described by using common words. Krotovinas - They are irregular tubular streaks within one layer of material transported from another layer. They are caused by the filling of tunnets made by turowing animals in one layer with material from outside the layer. In a profile, they appear as rounded or eiliptical volumes of various sizes. Store Store Robit Construction of other the soil is concerned and the layer. They are caused by the filling of tunnets and the layer. They are caused by the filling of tunnets and the layer. In a profile, they appear as rounded or eiliptical volumes of various sizes. Store Item - A natural concentration of rock fragments caused by fluxial action or other transport the soil is present in the so				
17 Sample Bag 17 Sample Bag				
Image: second				
1 Sample Bag 1 Sample Bag				
17 Sample Bag 17 Sample Bag				
1 Sample Bag 1 Sample Bag				
1 Sample Bag 1 Sample Bag				
1 Sample Bag No 1 Sample Bag No				burrows, paths,
1 Sample Bag 1 Sample Bag				feeding grounds,
Image:				
Image: superior is the proform. Surface as special notes or in the proform. The features produced by animals in the soil are described by using common words. Krotovinas - They are irregular tubular streaks within one layer of material transported from another layer. They are caused by the filling of tunnels made by burrowing animals in one layer with material from outside the layer. In a profile, they appear as rounded or elliptical volumes of various sizes. Stone line - A natural concentration of rock fragments caused by fluvial action or other transport agents, if present in the soil is to identified and described. It may be quartz or other types and the depth of its occurrence can be noted. Tongues of argillic material, seen in some soils needs to describe. 17 Sample Bag No				castings, and other
17 Sample Bag 1 Sample Bag				
Image: state in the state				
ifeatures produced by animals in the soil are described by using common words. Krotovinas - They are irregular tubular streaks within one layer of material transported from another layer. They are caused by the filling of tunnels made by burrowing animals in one layer with material from outside the layer. In a profile, they appear as rounded or elliptical volumes of various sizes. Stone line - A natural concentration of rock fragments caused by fluvial action or other transport agents, it present in the soil is to identified and described. It may be quart or other types and the depth of its occurrence can be noted. Tongues of argillic material, seen in some soils needs to describe. 17 Sample Bag No				
by animais in the soil are described by using common words. Krotovinas - They are irregular tubular streaks within one layer of material transported from another layer. They are caused by the filling of tunnels made by burrowing animals in one layer with material from outside the layer. In a profile, they appear as rounded or elliptical volumes of various sizes. Stone line - A natural concentration of rock fragments caused by fluvial action or other transport agents, if present in the soil is to identified and described. It may be guartz or other types and the depth of its occurrence can be noted. Tongues of argiliti material, seen in some soils needs to describe.				
soil are described by using common words. Krotovinas - They are irregular tubular streaks within one layer of material transported from another layer. They are caused by the filling of tunnels made by burrowing animals in one layer with material from outside the layer. In a profile, they appear as rounded or elliptical volumes of various sizes. Stone line - A natural concentration of rock fragments caused by fluvial action or other transport agents, if present in the soil is to identified and described. It may be quartz or other types and the depth of its occurrence can be noted. Tongues of argilitic material, seen in some soils needs to describe.				
Image: strate				
words. Krotowinas - They are irregular tubular streaks within one layer of material transported from another layer. They are caused by the filling of tunnels made by burrowing animals in one layer with material from outside the layer. In a profile, they appear as rounded or elliptical volumes of various sizes. Stone line - A natural concentration of rock fragments caused by fluvial action or other transport agents, if present in the soil is to identified and described. It may be quartz or other types and the depth of its occurrence can be noted. Tongues of argillic material, seen in some soils needs to describe.				
Krotovinas - They are irregular tubular streaks within one layer of material transported from another layer. They are caused by the filling of tunnels in one layer with material from outside the layer. In a profile, they appear as rounded or elliptical volumes of various sizes. Stone line - A natural concentration of rock fragments caused by fluvial action or other transport agents, if present in the soil is to identified and described. It may be quartz or other types and the depth of its occurrence can be noted. Tongues of argillic material, seen in some soils needs to describe.				ě
are irregular tubular streaks within one layer of material transported from another layer. They are caused by the filling of tunnels made by burrowing animals in one layer with material from outside the layer. In a profile, they appear as rounded or elliptical volumes of various sizes. Store line - A natural concentration of rock fragments caused by fluvial action or other transport agents, if present in the soil is to identified and described. It may be quart or other types and the depth of its occurrence can be noted. Torgues of agillic material, seen in some soils needs to describe.				
17 Sample Bag 17 Sample Bag				
Iayer of material transported from another layer. They are caused by the filling of tunnels made by burrowing animals in one layer with material from outside the layer. In a profile, they appear as rounded or elliptical volumes of various sizes. Stone line - A natural concentration of rock fragments caused by fluvial action or other transport agents, if present in the soil is to identified and described. It may be quartz or other types and the depth of its occurrence can be noted. Tongues of argillic material, seen in some soils needs to describe.				
Image: state in the state				
another layer. They are caused by the filling of tunnels made by burrowing animals in one layer with material from outside the layer. In a profile, they appear as rounded or elliptical volumes of various sizes. Stone line - A natural concentration of rock fragments caused by fluvial action or other transport agents, if present in the soil is to identified and described. It may be quartz or other types and the depth of its occurrence can be noted. Tongues of argillic material, seen in some soils needs to describe.				
are caused by the filling of tunnels made by burrowing animals in one layer with material from outside the layer. In a profile, they appear as rounded or elliptical volumes of various sizes. Stone line - A natural concentration of rock fragments caused by fluvial action or other transport agents, if present in the soil is to identified and described. It may be quartz or other types and the depth of its occurrence can be noted. Tongues of argillic material, seen in some soils needs to describe. 17 Sample Bag No				
17 Sample Bag 17 Sample Bag 17 Sample Bag 11 Sample Bag 11 Sample Bag				
Image:				
17 Sample Bag 17 Sample Bag 11 Sample Bag 11 Sample Bag				
Image: state in the state				
17 Sample Bag 17 Sample Bag 11 Sample Bag 11 Sample Bag				5
a profile, they appear as rounded or elliptical volumes of various sizes. Stone line - A natural concentration of rock fragments caused by fluvial action or other transport agents, if present in the soil is to identified and described. It may be quartz or other types and the depth of its occurrence can be noted. Tongues of argillic material, seen in some soils needs to describe. 17 Sample Bag No				
appear as rounded or elliptical volumes of various sizes. Stone line - A natural concentration of rock fragments caused by fluvial action or other transport agents, if present in the soil is to identified and described. It may be quartz or other types and the depth of its occurrence can be noted. Tongues of argillic material, seen in some soils needs to describe. 17 Sample Bag No				
Image: state in the second state in				
17 Sample Bag No 17 Sample Bag No				
17 Sample Bag No 17 Sample Bag No				
17 Sample Bag No 14 Sample Bag No				
17 Sample Bag No 14 Sample Bag				
17 Sample Bag No 11 11				
17 Sample Bag No				
action or other transport agents, if present in the soil is to identified and described. It may be quartz or other types and the depth of its occurrence can be noted. Tongues of argillic material, seen in some soils needs to describe.				
17 Sample Bag No 11				
17 Sample Bag No				
17 Sample Bag No				
17 Sample Bag No				
quartz or other types and the depth of its occurrence can be noted. Tongues of argillic material, seen in some soils needs to describe.				
image: state of the second state of				
of its occurrence can be noted. Tongues of argillic material, seen in some soils needs to describe. 17 Sample Bag No				
17 Sample Bag No				
17 Sample Bag No 11 12 13 14 15 17 17 17 17 18 17 17 17 17 17 17 17 17 17 17 17 18 17 18 17 17 18 17 18 17 18 17 18 17 18 18 18 18 17 18 18 18 18 18 18 18 18				
17 Sample Bag No Sample Bag Imaterial, seen in some soils needs to describe.				
17 Sample Bag No some soils needs to describe.				
17 Sample Bag No describe.				
No				
	17			
II Soil Character It is the practice of	11			
		Soil	Character	It is the practice of

	Taxonomy			describing,
				categorizing and
	Soil Orders			naming soils
	Alfisols	alf	Character	Alfisols are base
				rich, mineral soils of sub humid and
				sub humid and humid regions.
				These are
				characterized by a
				light-colored surface
				horizon over a clay enriched argillic sub
				surface horizon that
				is rich in
				exchangeable
				cations with base saturation of more
				than 35 per cent
				alfisols are more
				strongly weathered
				than the Inceptisols but less so than the
				Ultisols
	Aridisols	ids	Character	These are mineral
				soils of dry places
				(arid and semi-arid)
				and of areas having high ground water
				table. The soils
				remain dry for most
				part of the year and
				salts accumulate as the surface and/or
				in the solum,
				resulting in the
				development of a
				salic, gypsic or calcic horizon
	Andisols	and	Character	These soils are
				developed on
				volcanic ash and are
				typically dark coloured, low bulk
				density soils that do
				not have an albic
				horizon but must
				have andic properties
	Entisols	ent	Character	These are very
				recently developed
				mineral soils with
				no diagnostic
			I	horizon other than

			r		
					an Ochric or
					anthropic epidon.
					The main feature of
					Entisols is a slight
					degree of soil
					formation because
					of either limiting
					time or exceeding
					unfavourable
					conditions
 Oxisols	0.1/	Character			
UXISUIS	ох	Character			These are strongly
					and deeply
					weathered mineral
					soils of the humid
					tropics that are poor
					in fertility. These are
					characterized by a
					uniform profile
					having negligible
					amounts of
					weatherable
					minerals and are
					dominated by
					kaolinitic and
					sesquioxsides rich
					•
					deep sub surface
Cradaaala	odo	Character			horizon
Spodosols	ods	Character			These are mineral
					soils with
					accumulation of
					sesquioxides and
					humus in the sub
					surface horizons.
					These develop under
					cool, humid climate
					and coarse texture
					siliceous parent
					material which
					favours free leaching
					conditions. These
					are sparesely formed
					in hot humid
					tropical and in
					warm humid regions
					where the parent
					material is sandy
					and ground water
					fluctuates
Inceptisols	ept	Character			These soils
1					represent early stage
					in a soil formation
					which is housed
					which is beyond that of Entisol but

				I I I I I I I I I I I I I I I I I I I		
						still short of the
						degree of
						development as
						observed in Alfisols
						are Inceptisols. They
						may have some
						accumulation of clay
						in sub-surface
						horizon but it is not
						sufficient enough to
						quality for an argillic
						horizon, which is
						diagnostic for
						Alfisols and Ultisols
	Varticala	ort	Character			
	Vertisols	ert	Character			These are uniform,
						thick tropical black
						and other dark
						colored cracking
						clay mineral soil
						that have high
						content of clay.
						These soils swell on
						wetting and shrink
						on drying and
						develop wide, deep
						cracks associated
						with gilgai micro-
						relief or
						slickensides close
						enough to intersect.
	Ultisols	ult	Character			The Ultisols are
						comparable with
						Alfisols, except for
						having low base
						saturation on the
						exchange complex
						which is due to their
						advanced stage of
						weathereing. These
						are base poor,
						mineral soils of
						humid region
						0
						developed under
						high rainfall and
						forest vegetation
	Mollisols	oll	Character			These are soils of
						grassland vegetation
						under sub-humid to
						humid environment.
						They have a dark
						coloured, well
L			l			

			developed, base rich, well structured surface horizon that is rich in organic matter.
Gelisols	el	Character	Gelisols are conceptually the soils with gelic materials underlain by permafrost. Diagnostic horizon may or may not be present in Gelisols as thawing and freezing play an important role in their evolution
Histosols	ist	Character	A soil without permafrost is classified as histosols if half or more of the upper 80 cm is organic.

3.2.3 Soil physical parameters

Field study of soils, as they occur in different horizons forming a profile, involves detailed characterization of the various physical properties that can be suitably assessed. This properties include Horizon, Depth, Particle size Class, Bulk-Density, Saturated Hydraulic conductivity, Moisture Retention. While some of these characters like structure and consistence can be only descriptive though specifically indicative of certain conditions, it is quite possible to describe quantitavely others like soil color, texture, pH, etc., though determination carried out in the field. The soil physical parameters and their detailed description are shown in table 3.

S.No.	Data Element Name	Short Name	Data Type	Unit Of Measure	Minimum value	Maximum Value	Description
1	Horizon	Н	Character				Horizon development indicates the extent and degree of soil genesis. It varies widely from soil to soil. In the early stages of soil formation, horizon development may be weak.
	Organic Material	0	Character				This layer is dominated by organic material. They consist of undecomposed or partially decomposed litter, deposited on the surface of either mineral or organic soils. The O layer may be present on the surface of a mineral soil or at any depth beneath the surface, if it is buried. A horizon formed by illuviation of organic material into mineral subsoil is not considered as an O horizon.
	Mineral Horizon	A	Character				It is a mineral horizon formed at

 Table 3: Soil physical parameters and their description

		1		
				the surface or below O horizon. They exhibit obliteration of all or much of the original rock structure and show an accumulation of humified organic matter intimately mixed with the mineral fraction. This horizon is not dominated by properties of either E or B horizons or properties resulting from cultivation, pasturing, or similar kinds of disturbance.
Mineral Horizon	E	Character		Mineral horizon in which the main feature is loss of silicate clay, iron, aluminium, or some combination of these, leaving a concentration of sand and silt particles. These horizons exhibit obliteration of all or much of the original rock structure. This horizon is usually lighter in colour than B and A horizons. The organic matter is normally less than A horizon and occurs commonly near the surface (below O or A horizon and above B horizon).
Mineral Horizon	В	Character		Horizons that formed below an A, E, or O horizon and are dominated by obliteration of all or much of the original rock structure.
Mineral Horizon	С	Character		Horizons or layers, excluding hard bedrock, that are

							T
							little affected by
							pedogenic
							processes and lack
							properties of O, A,
							E, or B horizons.
							The material of C
							layers may be
							either like or unlike
							that from which the
							solum persumably
							formed. The C
							horizon may have
							been modified even
							if there is no
							evidence of
							pedogenesis.
	Bed Rock	R	Character				The R layer is
							sufficiently
							coherent when
							moist to make hand
							digging with a
							spade impractical,
							although it may be
							chipped or
							scrapped.
2	Depth	D	Integer	cm			Soil depth indicates
2	Deptil	U	integer	CIII			
							the depth of the
							solum, which
							includes A and B
							horizons, occurring
							above the parent
							material or hard
							rock. Depth is
							measured from the
							soil surface.
	Extremely		Integer	cm	0	10	Soil depth ranging
	Shallow		integer	GITT	Ũ	10	from 0 to 10 cm
	Very		Intogor	cm	10	25	Soil depth ranging
			Integer	CITI	10	20	
	Shallow				05		from 10 to 25 cm
	Shallow		Integer	cm	25	50	Soil depth ranging
							from 25 to 50 cm
	Slightly		Integer	cm	50	75	Soil depth ranging
	deep						from 50 to 75 cm
	Moderately		Integer	cm	75	100	Soil depth ranging
	deep		_				from 75to 100 cm
	Deep		Integer	cm	100	150	Soil depth ranging
			- 3 -				from 100 to 150 cm
	Very Deep		Integer	cm		>150	Soil depth > 150 cm
3	Particle	PSD	Float	Percent		2100	Particle size classes
5		F3D	riuat	FEICEIII			are used only for
	size Class						
							the family names of
							terric sub groups of
							Histosols and
							Histels. The classes
							are determined
							from the properties
							of the mineral soil
							materials in the
							control section

				through use of the
				key to particle-size classes. The classes
				are more
				generalized than
				those for soils in
				other orders. A fine earth
Fragmenta	G	Float	Percent	component of less
Ι				than 10 per cent
				(including associated medium
				and finer pores) of
				the total volume.
Sandy	Ζ	Float	Percent	A texture (of the
skeletal				fine earth) of sand or loamy sand,
Siteretai				including less than
				50 percent (by
				weight)very fine
				sand in the fine earth fraction
	14			Less than 35
Loamy	К	Float	Percent	percent clay in the
skeletal				fine-earth fraction
				and a content of rock fragments of
				35 percent or more
				of the total volume
Sandy	S			The texture of the
				fine earth includes sands and loamy
				sands, exclusive of
				loamy very fine
				sand and very fine
				sand textures; particle >2 mm
				occupy less than
				35% (by volume).
Clayey	Р	Float	Percent	A content of rock fragments of 35
Skeletal				percent or more of
				the total volume
Loamy	L	Float	Percent	7 to 27 % clay, 28
5				to 50 % silt and 52 % or less sand
Coarso	R	Float	Dorcont	A loamy particle
Coarse	К	FIUdl	Percent	size that has 15%
loamy				or more (by weight)of fine
				sand(0.25-0.1 mm)
				or coarser particles,
				including fragments
				up to 75 mm, and has less than
				18%(by weight) clay
				in the fine earth
				fraction

	Fine	М	Float	Percent			A loamy particle
	Loamy						size that has less than 15% (by weight) of fine sand (0.025-0.1mm) including fragments up to 75 mm, and
							has less than 18- 35%(by weight) clay in the fine earth fraction
	Coarse silty	Т	Float	Percent			A loamy particle size that has 15% or more (by weight)of fine sand(0.25-0.1 mm) or coarser particles, including fragments up to 75 mm, and has less than 18%(by weight) clay in the fine earth fraction
	Silty	Y	Float	Percent			80 % or more silt and less than12 % clay
	Clayey	С	Float	Percent			A clay content of 35 percent or more in the fine- earth fraction.
	Fine	F	Float	Percent			A clayey particle size that has 35- 60% (by weight) clay in the fine earth fraction.
	Very Fine	V	Float	Percent			A clayey particle size that has 60% or more (by weight) clay in the fine earth fraction.
4	Bulk- Density	Bd	Float	Mg∕m³	1.1	2.0	It is defined as the mass per unit volume of total soil including both soil solids and pores expressed on oven dry basis.
5	Saturated Hydraulic Conductiv ity	sHC	Float	cm h ^{.1}			It is a quantative measure of saturated soils ability to transmit water when subjected to hydraulic gradient
6	Texture		Character				Soil texture refers to the relative proportion (per cent by weight) of sand, silt and clay

						present in a soil.
	sand	S	Character			More than 85 %
	Sana	5	onlaractor			sand , the
						percentage of silt
						plus 1.5 times the
						% of clay is less
						than 15
	loamy	ls	Character			Between 70 and 91
	sand	10	ornaraotor			% sand and the
	Sana					percentage of silt
						plus 1.5 times the
						percentage of clay
						is 15 or more, and
						the percentage of
						silt plus twice the
						percentage of clay
						is < 30
	sandy	sl	Character			7 to 20 % clay , >
	loam	0.				52 % sand , and
						the percentage of
						silt plus twice the
						percentage of clay
						is 30 or more; or
						less than 7 % clay,
						< 50 % silt, and >
						43 % sand
	loam		Character			7 to 27 % clay, 28
						to 50 % silt and 52
						% or less sand
	silty loam	sil	Character			50 % or more silt
	5					and 12 to 27 %
						clay, or 50 to 80 %
						silt and less than
						12 % clay
-	silt	sl	Character			80 % or more silt
						and less than12 %
						clay
	sandy clay	scl	Character			20 to 35 % clay ,
	loam					less than 28 % silt,
						and more than 45
						% sand
	clay loam	cl	Character	$ $ \top		27 to 40 % clay and
						more than 20 to 46
						% sand
	silty clay	sicl	Character			27 to 40 % clay and
	loam					20 % or less sand
	sandy clay	SC	Character			35 % or more clay
						and 45 % or more
L						 sand
	silty clay	sic	Character			40 % or more clay
						and 40 % or more
ļ						silt
	clay	С	Character			40% or more clay,
						45% or more sand,
<u> </u>						 and < 40 % silt
7	Moisture		Float	Percent	33	At 33kPa suction,
	Retention					the water content
						in the draining zone
						will subsequently

						change only slowly
						& the soil is said to
						be as field capacity.
						Field capacity has
						been defined at the
						amount of water,
						expressed as
						percent of oven dry
						soil, held in a soil
						as soon as the
						excess of
						gravitational water
						has drained away &
						the rate of
						downward
						movement of water
						has materially
						decreased.
8	Moisture		Float	Percent	1500	Water held at these
•	Retention					tensions in pore is
	Recention					available water.
						This is the amount
						of soil water on
						which plant life
						depends.
9	Available	AWC	Integer	mm		It is the capacity of
	water					soil to hold the
	Capacity					moisture between
						field capacity and
						wilting coefficient
						i.e. between (1/3
						atmosphere-0.3
						bar) to 15
						atmosphere.
10	Water	WHC	Integer	mm		 Water Holding
	Holding		integer			Capacity of soil is
	Capacity					its ability to hold
						water against the
						force of gravity or
						Water Holding
						Capacity is water
						retained by the soil
						after it has been
						saturated & allowed
						to drain for 12 to
						48 hrs. This
						assumes that
						drainage will be
						negligible after this
1	1			1	1	time

3.2.4 Soil chemical parameters

Field study of soils, as they occur in different horizons forming a profile, involves detailed characterization of the various chemical properties that can be suitably assessed. These properties include Soil reaction (pH), Salinity, Sodicity, Organic Carbon, Electrical Conductivity. The soil physical parameters and their detailed description are shown in table 4.

S.N o	Data Element Name	Short Name	Data Type	Unit Of Measure	Minimum value	Maximum Value	Description
1	Horizon	Н	Character				Horizon development indicates the extent and degree of soil genesis. It varies widely from soil to soil. In the early stages of soil formation, horizon development may be weak.
	Organic Material	0	Character				This layer is dominated by organic material. They consist of undecomposed or partially decomposed litter, deposited on the surface of either mineral or organic soils. The O layer may be present on the surface of a mineral soil or at any depth beneath the surface, if it is buried. A horizon formed by illuviation of organic material into mineral subsoil is not considered as an O horizon.
	Mineral Horizon	A	Character				It is a mineral horizon formed at the surface or

Table 4: Soil chemical parameters and their description

						below O horizon.
						They exhibit
						obliteration of all
						or much of the
						original rock
						structure and
						show an
						accumulation of
						humified organic
						matter intimately
						mixed with the
						mineral fraction.
						This horizon is
						not dominated by
						properties of
						either E or B
						horizons or
						properties
						resulting from
						cultivation,
						pasturing, or
						similar kinds of
						disturbance.
	Mineral	E	Character			Mineral horizon
	Horizon					in which the
						main feature is
						loss of silicate
						clay, iron,
						aluminium, or
						some
						combination of
						these, leaving a
						concentration of
						sand and silt
						particles. These
						horizons exhibit
						obliteration of all
						or much of the
						original rock
						structure. This
						horizon is usually
						lighter in colour
						than B and A
						horizons. The
						organic matter is
						normally less
						than A horizon
						and occurs
						commonly near
						the surface
						(below O or A
						horizon and
		_				above B horizon).
	Mineral	В	Character			Horizons that
	Horizon					formed below an
						A, E, or O
						horizon and are
						dominated by
						obliteration of all
·		•				

							or much of the
							or much of the original rock
							original rock structure.
	Mineral	С	Character				Horizons or
	Horizon	C	Character				
							layers, excluding
							hard bedrock,
							that are little
							affected by
							pedogenic
							processes and
							lack properties of
							O, A, E, or B
							horizons. The
							material of C
							layers may be
							either like or
							unlike that from
							which the solum
							persumably
							formed. The C
							horizon may have
							been modified
							even if there is no
							evidence of
	Bed Rock	R	Character				pedogenesis.
	Bed ROCK	R	Character				The R layer is
							sufficiently
							coherent when
							moist to make
							hand digging
							with a spade
							impractical,
							although it may
							be chipped or
							scrapped.
							Granite, gniess,
							quartzite,
							sandstone,
							indurated
							limestone etc are
							some examples of
							the bedrock seen
							in the profile and
							are designated as
							R.
2	Depth	D	Integer	cm			Soil depth
2	Deptil		integer	CIII			indicates the
							depth of the
1							•
							solum, which
							includes A and B
							horizons,
							occurring above
							the parent
							material or hard
							rock. Depth is
1							measured from
							the soil surface.
	— · ·				-		Call days the
	Extremely		Integer	cm	0	10	Soil depth
	Extremely Shallow		Integer	cm	0	10	ranging from 0 to

							10 cm
	Very Shallow		Integer	cm	10	25	Soil depth ranging from 10 to 25 cm
	Shallow		Integer	cm	25	50	Soil depth ranging from 25 to 50 cm
	Slightly deep		Integer	cm	50	75	Soil depth ranging from 50 to 75 cm
	Moderately deep		Integer	cm	75	100	Soil depth ranging from 75to 100 cm
	Deep		Integer	cm	100	150	Soil depth ranging from 100 to 150 cm
	Very Deep		Integer	cm		>150	Soil depth > 150 cm
3	Soil reaction (pH)	рН	Float		0	14	Both colorimetric and electrometric methods are used for measuring pH. It is the negative logarithm of hydrogen iron concentration.
	Strongly acidic		Float		4	4.5	pH ranges from 4 to 4.5
	Moderately acidic		Float		4.5	5.5	pH ranges from 4.5 to 5.5
	Slightly acidic		Float		5.5	6.5	pH ranges from 5.5 to 6.5
	Neutral		Float		6.5	7.5	pH ranges from 6.5 to 7.5
	Slightly alkaline		Float		7.5	8.5	pH ranges from 7.5 to 8.5
	Moderately alkaline		Float		8.5	9.5	pH ranges from 8.5 to 9.5
	Strongly alkaline		Float			>9.5	pH is greater than 9.5
4	Salinity		Integer	ECe(dSm ⁻¹)	0	>50	A non sodic soil containing an excess of soluble salt (EC >4 dSm ⁻ ¹) that adversely affect plant growth and impair its productivity.
	Negligible	S0	Integer	ECe(dSm ⁻¹)	1	2	Salinity ranges from 1 to 2 ECe(dSm ⁻¹)
	Slight	S1	Integer	ECe(dSm ⁻¹)	2	4	Salinity ranges from 2 to 4 ECe(dSm ⁻¹)
	Moderate	S2	Integer	ECe(dSm ⁻¹)	4	8	Salinity ranges from 4 to 8

							ECe(dSm ⁻¹)
	Moderately Strong	S3	Integer	ECe(dSm ⁻¹)	8	15	Salinity ranges from 8 to 15 ECe(dSm ⁻¹)
	Strong	S4	Integer	ECe(dSm ⁻¹)	15	25	Salinity ranges from 15 to 25 ECe(dSm ⁻¹)
	Severe	S5	Integer	ECe(dSm ⁻¹)	25	50	Salinity ranges from 25 to 50 ECe(dSm ⁻¹)
	Very Severe	S6	Integer	ECe(dSm ⁻¹)		>50	Salinity is greater than 50 ECe(dSm ⁻¹)
5	Sodicity		Integer	Per cent	0	40	A soil containing sufficient amount of exchangeable sodium that adversely affects crop production and soil structure under most conditions of soil and plant type.
	Negligible	NO	Integer	Per cent	0	5	Sodicity ranges from 0 to 5%
	Slight	N1	Integer	Per cent	5	15	Sodicity ranges from 5 to 15%
	Moderate	N2	Integer	Per cent	15	25	Sodicity ranges from 15 to 25%
	Strong	N3	Integer	Per cent	25	40	Sodicity ranges from 25 to 40%
	Severe	N4	Integer	Per cent		>40	Sodicity is greater than 40%
6	Electrical Conductivit Y	EC	Float	dSm ⁻¹	0	1000	It is a measure of the concentration of water soluble salts in soils.
7	Organic Carbon	OC	Float	Per cent	0	100	Carbon held within the soil, primarily in association with its organic content
8	Calcium carbonate	CaCo ₃	Float	Per cent	0	100	Calcium carbonate is defined as the total carbonates which is contained in 100g of dry soil
9	Base saturation Percent	BS	Integer	Per cent	0	100	It refers to a measurement or estimate of the percent of the soil CEC that is occupied by a particular nutrient or the

							sum of a group of nutrients
10	Extractable Cations		Integer	cmol(P+) kg ⁻¹	0	100	It is a measure of the number of negatively charged sites in the soil, expressed as milli-equivallents per 100gms of soil
	Calcium	Са	Integer	cmol(P+) kg-1			A white metallic element that burns with a brilliant light
	Magnesium	Mg	Integer	cmol(P+) kg-1			A chemical element with atomic number 12 and common oxidation number +2.It is an alkaline earth metal and the eighth most abundant element
	Sodium	Na	Integer	cmol(P+) kg-1			The chemical element of atomic number 11,a soft silver-white reactive metal of the alkali metal group
	Potassium	K	Integer	cmol(P+) kg-1			The chemical element of atomic number 19,a soft, silvery white reactive metal of the alkali metal group
11	Sum Of Cations		Integer	cmol(P+)kg-1	0	100	It is the sum of exchangeable calcium, magnesium, potassium and sodium ions in the soil.
12	Exchangeab le Sodium Percentage	ESP	Integer	Per cent	0	100	The degree of saturation of the soil exchange complex with sodium
13	Cation Exchange Capacity	CEC	Integer	cmol(P+)kg-1	0	100	It is a calculated value that is an estimate of the soils ability to attract, retain and exchange cation elements

	Calcium	Са	Integer	cmol(P+) kg-1			A white metallic
	Calcium	Ca	Integer	cmol(P+) kg-			element that
							burns with a
							brilliant light
	Magnesium	Mg	Integer	cmol(P+) kg-1			A chemical
	5	0	0				element with
							atomic number
							12 and common
							oxidation number
							+2.It is an
							alkaline earth
							metal and the eighth most
							abundant
							element
	Sodium	Na	Integer	cmol(P+) kg-1			The chemical
							element of atomic
							number 11,a soft
							silver-white
							reactive metal of
							the alkali metal
		14					group
	Potassium	К	Integer	cmol(P+) kg-1			The chemical
							element of atomic number 19,a soft,
							silvery white
							reactive metal of
							the alkali metal
							group
	Aluminium	AI	Integer	cmol(P+) kg-1			A silvery ductile
							metallic element
							found primarily
							in bauxite
	Hydrogen	Н	Integer	cmol(P+) kg-1			It is the chemical
			Ū				element with
							atomic number 1.
14	Extractable		Float	ppm	0	100	It is the
	Nutrients						determination of
							extracted
							constituents by
							analytical
	Nither	N I	F 1- 1				process
	Nitrogen (Primary	Ν	Float	ppm			The chemical element if atomic
	(Primary nutrients)						number 7,a
	nationitaj						colorless, odourless
							unreactive gas that
							forms about 78% of
							the earth's
							atmosphere
	Phosporous	Р	Float	ppm			A multivalent non
	(Primary						metallic element of
	nutrients)						the nitrogen family
							that occurs
							commonly in
						1	
							inorganic phosphate rocks

				1	and an interval
					and as organic
					phosphates in all
					 living cells
	Potassium	К	Float	ppm	The chemical
	(Primary				element of atomic
	nutrients)				number 19, a soft,
					silvery white
					reactive metal of
					the alkali metal
					group
	Sulphur	S	Float	ppm	It is the chemical
	(Secondary				element with
	nutrients)				atomic number 16
	,				and an abundant,
					multivalent non-
					metal
	Calcium	Са	Float	ppm	A white metallic
	(Secondary	Сu	ribat	ppm	element that burns
	nutrients)				with a brilliant
	nutrients				light; the fifth most
					abundant element
					in the earth's crust
	Magnesium	Mg	Float	ppm	A chemical element
	(Secondary				with atomic
	nutrients)				number 12 and
					common oxidation
					number +2. It is an
					alkaline earth
					metal and the
					eighth most
					abundant element.
	Boron	В	Float	ppm	The chemical
	(Micronutrien				element of atomic
	t anion)				number 5, a non
					metallic solid.
	Manganese	Mn	Float	ppm	The chemical
	(Micronutrien		ribut	ppm	element of atomic
	t cations)				number 25, a hard
	t outlonloy				grey metal that is
					an component of
					special steels and
	Zipo	7	Elso+		 magnetic alloys
	Zinc	Zn	Float	ppm	It is a metallic
	(Micronutrien				chemical element
	t cations)				with atomic
					 number 30
	Iron	Fe	Float	ppm	A strong, hard,
	(Micronutrien				magnetic, silvery-
	t cations)				grey metal
	Copper	Cu	Float	ppm	A red-brown metal,
	(Micronutrien				the chemical
	t cations)				element of atomic
	,				number 29
L				1	1

4. Summary

The data content standards for soils have been studied and compiled for NSDI based on the available information from various sources. The efforts has been made to find out the necessary data elements pertaining to soil resource database for the Indian scenario/organizations in generation of geospatial soil resource database. The generated data content standards for soils will enable to move forward for effective geospatial database management at the respective organizations and development of metadata for NSDI.

References

- AISLUS, (1971). All India Soil and Land Use Survey, Soil Survey Manual, Indian Agricultural Research Institute (IARI) Publ. New Delhi.
- Klingebiel, A.A. and Montogomery, P.H. (1961). Land capability classification, U.S. Dept. Agricultural Handbook No.210.
- Natarajan, A and Sarkar, D. (2009). Field Guide for Soil Survey, NBSS&LUP, Nagpur, pp 1-71.
- Sehgel, J.L. (1990). Soil Resource Mapping of different states of India- Why and How, Soil Bull. 23, NBSS Publ. Nagpur India.
- Soil Survey Staff (2010). Keys to soil taxonomy. 11th edn, Washington, DC: United States Department of Agriculture. Nat. Res. Conserv. Service, p. 338

Annexure-I

Soil Taxonomy (Soil Orders, Sub Orders, Great Groups and Sub Groups)

Sr.No	Orders	Sub Orders	Great Groups	Sub Groups
1	Alfisols	Aqualfs	Albaqualfs	Arenic Albaqualfs
				Aeric Vertic Albaqualfs
				Chromic Vertic Albaqualfs
				Vertic Albaqualfs
				Udollic Albaqualfs
				Aeric Albaqualfs
				Aquandic Albaqualfs
				Mollic Albaqualfs
				Umbric Albaqualfs
				Typic Albaqualfs
			Cryaqualfs	Typic Cryaqualfs
			Duraqualfs	Typic Duraqualfs
			Endoaqualfs	Aquandic Endoaqualfs
				Chromic Vertic Endoaqualfs
				Vertic Endoagualfs
				Aeric Fragic Endoaqualfs
	1	1		Fragic Endoaqualfs
				Arenic Endoaqualfs
	1	1		Grossarenic Endoaqualfs
				Udollic Endoaqualfs
				Aeric Umbric Endoagualfs
				Aeric Endoagualfs
				Mollic Endoagualfs
				Umbric Endoaqualfs
				Typic Endoaqualfs
			Epiaqualfs	Aeric Chromic Vertic Epiaqualfs
				Aeric Vertic Epiaqualfs
				Chromic Vertic Epiaqualfs
				Vertic Epiaqualfs
				Aquandic Epiaqualfs
				Aeric Fragic Epiaqualfs
				Fragic Epiaqualfs
				Arenic Epiaqualfs
				Grossarenic Epiaqualfs
				Aeric Umbric Epiaqualfs
	-	+		Udollic Epiaqualfs
				Aeric Epiaqualfs
				Mollic Epiaqualfs
		+		Umbric Epiaqualfs
				Typic Epiaqualfs
			Fragiaqualfs	Vermic Fragiagualfs
		+		8 1
				Aeric Fragiaqualfs
				Plinthic Fragiaqualfs
				Humic Fragiaqualfs
				Typic Fragiaqualfs
			Glossaqualfs	Histic Glossagualfs
	1	1		Arenic Glossaqualfs
				Aeric Fragic Glossaqualfs
				Fragic Glossaqualfs

			Aeric Glossaqualfs
			Mollic Glossaqualfs
			Typic Glossaqualfs
		Kandiaqualfs	Arenic Kandiaqualfs
			Grossarenic Kandiaqualfs
			Plinthic Kandiaqualfs
			Aeric Umbric Kandiaqualfs
			Aeric Kandiaqualfs
			Umbric Kandiaqualfs
			Typic Kandiaqualfs
		Natraqualfs	Vertic Natraqualfs
			Vermic Natraqualfs
			Albic Glossic Natraqualfs
			Albic Natraqualfs
			Glossic Natraqualfs
			Mollic Natraqualfs
			Typic Natraqualfs
		Plinthaqualfs	Typic Plinthaqualfs
		Vermagualfs	Natric Vermagualfs
			Typic Vermaqualfs
	Cryalfs	Glossocryalfs	Lithic Glossocryalfs
	organs		Vertic Glossocryalfs
			Andic Glossocryalfs
			Vitrandic Glossocryalfs
			Aquic Glossocryalfs
			Oxyaquic Glossocryalfs
			Fragic Glossocryalfs
			Xerollic Glossocryalfs
			Umbric Xeric Glossocryalfs
			Ustollic Glossocryalfs
			Xeric Glossocryalfs
			Ustic Glossocryalfs
			Mollic Glossocryalfs
			Umbric Glossocryalfs
			Eutric Glossocryalfs
			Typic Glossocryalfs
		Haplocryalfs	Lithic Haplocryalfs
			Vertic Haplocryalfs
			Andic Haplocryalfs
			Vitrandic Haplocryalfs
			Aquic Haplocryalfs
			Oxyaquic Haplocryalfs
			Lamellic Haplocryalfs
			Psammentic Haplocryalfs
			Inceptic Haplocryalfs
			Xerollic Haplocryalfs
			Umbric Xeric Haplocryalfs
			Ustollic Haplocryalfs

		Xeric Haplocryalfs
		Ustic Haplocryalfs
		Mollic Haplocryalfs
		Umbric Haplocryalfs
		Eutric Haplocryalfs
		Typic Haplocryalfs
	Palecryalfs	Andic Palecryalfs
		Vitrandic Palecryalf
		Aquic Palecryalfs
		Oxyaquic Palecryalfs
		Xeric Palecryalfs
		Ustic Palecryalfs
		Mollic Palecryalfs
		Umbric Palecryalfs
		Typic Palecryalfs
Udalfs	Ferrudalfs	Aquic Ferrudalfs
		Typic Ferrudalfs
	Fragiudalfs	Andic Fragiudalfs
		Vitrandic Fragiudalfs
		Aquic Fragiudalfs
		Oxyaquic Fragiudalfs
		Typic Fragiudalfs
	Fraglossudalfs	Andic Fraglossudalfs
		Vitrandic Fraglossudalfs
		Aquic Fraglossudalfs
		Oxyaquic Fraglossudalfs
		Typic Fraglossudalfs
	Glossudalfs	Aquertic Glossudalfs
		Oxyaquic Vertic Glossudalfs
		Vertic Glossudalfs
		Aquandic Glossudalfs
 		Andic Glossudalfs
		Vitrandic Glossudalfs
		Fragiaquic Glossudalfs
		Aquic Arenic Glossudalfs
		Aquic Glossudalfs
		Arenic Oxyaquic Glossudalfs
 		Oxyaquic Glossudalfs
		Fragic Glossudalfs
 		Arenic Glossudalfs
 		Haplic Glossudalfs
 		Typic Glossudalfs
	Hapludalfs	Lithic Hapludalfs
		Aquertic Chromic
		HapludalfsAquertic Hapludalfs
		Oxyaquic Vertic Hapludalfs
 		Chromic Vertic Hapludalfs
		Vertic Hapludalfs

	Andic Hapludalfs
	Vitrandic Hapludalfs
	Fragiaquic Hapludalfs
	Fragic Oxyaquic Hapludalfs
	Aquic Arenic Hapludalfs
	Arenic Oxyaquic Hapludalfs
	Anthraquic Hapludalfs
	Albaquultic Hapludalfs
 	Albaquic Hapludalfs
	Glossaquic Hapludalfs
	Aquultic Hapludalfs
	Aquollic Hapludalfs
	Aquic Hapludalfs
	Mollic Oxyaquic Hapludalfs
	Oxyaquic Hapludalfs
	Fragic Hapludalfs
	Lamellic Hapludalfs
 	Psammentic Hapludalfs
	Arenic Hapludalfs
	Glossic Hapludalfs
	Inceptic Hapludalfs
	Ultic Hapludalfs
	Mollic Hapludalfs
	Typic Hapludalfs
Kandiudalfs	Plinthaquic Kandiudalfs
	Aquic Kandiudalfs
	Oxyaquic Kandiudalfs
	Arenic Plinthic Kandiudalfs
	Grossarenic Plinthic Kandiudalfs
	Arenic Kandiudalfs
	Grossarenic Kandiudalfs
	Plinthic Kandiudalfs
	Rhodic Kandiudalfs
	Mollic Kandiudalfs
	Typic Kandiudalfs
Kanhapludalfs	Lithic Kanhapludalfs
	Aquic Kanhapludalfs
	Oxyaquic Kanhapludalfs
	Rhodic Kanhapludalfs
	Typic Kanhapludalfs
Natrudalfs	Vertic Natrudalfs
	Glossaquic Natrudalfs
	Aquic Natrudalfs
	Typic Natrudalfs
Paleudalfs	Vertic Paleudalfs
	Andic Paleudalfs
	Vitrandic Paleudalfs
	Anthraquic Paleudalfs
	Fragiaquic Paleudalfs

		Plinthaquic Paleudalfs
		Glossaquic Paleudalfs
		Albaquic Paleudalfs
		Aquic Paleudalfs
		Oxyaquic Paleudalfs
		Fragic Paleudalfs
		Arenic Plinthic Paleudalfs
		Grossarenic Plinthic Paleudalfs
		Lamellic Paleudalfs
		Psammentic Paleudalfs
		Arenic Paleudalfs
		Grossarenic Paleudalfs
		Plinthic Paleudalfs
		Glossic Paleudalfs
 		Rhodic Paleudalfs
 		Mollic Paleudalfs
		Typic Paleudalfs
	Rhodudalfs	Typic Rhodudalfs
 Xeralfs	Durixeralfs	Natric Durixeralfs
 Acrans		Vertic Durixeralfs
		Aquic Durixeralfs
		Aduc Durixeralis Abruptic Haplic Durixeralfs
		Abruptic Durixeralfs
 		Haplic Durixeralfs
 		Typic Durixeralfs
	Fragivaralfa	Andic Fragixeralfs
	Fragixeralfs	Vitrandic Fragixeralfs
 		Mollic Fragixeralf
 		Aquic Fragixeralfs
 		Inceptic Fragixeralfs
 		Typic Fragixeralfs
	Haploxeralfs	Lithic Mollic Haploxeralfs
		LithicRuptic-Inceptic Haploxeralfs
 		Lithic Haploxeralfs
 		Vertic Haploxeralfs
 		Aquandic Haploxeralfs
 		Andic Haploxeralfs
 		Vitrandic Haploxeralfs
		Fragiaquic Haploxeralfs
		Aquultic Haploxeralfs
		Aquic Haploxeralfs
		Natric Haploxeralfs
		Fragic Haploxeralfs
		Lamellic Haploxeralfs
		Psammentic Haploxeralfs
		Plinthic Haploxeralfs
		Calcic Haploxeralfs
		Inceptic Haploxeralfs
		Ultic Haploxeralfs

			Mollic Haploxeralfs
			Typic Haploxeralfs
		Natrixeralfs	Vertic Natrixeralfs
			Aquic Natrixeralfs
			Typic Natrixeralfs
		Palexeralfs	Vertic Palexeralfs
			Aquandic Palexeralfs
			Andic Palexeralfs
			Vitrandic Palexeralfs
			Fragiaquic Palexeralfs
			Aquic Palexeralfs
			Petrocalcic Palexeralfs
			Lamellic Palexeralfs
			Psammentic Palexeralfs
			Arenic Palexeralfs
			Natric Palexeralfs
			Fragic Palexeralfs
			Calcic Palexeralfs
			Plinthic Palexeralfs
			Ultic Palexeralfs
			Haplic Palexeralfs
			Mollic Palexeralfs
			Typic Palexeralfs
		Plinthoxeralfs	Typic Plinthoxeralfs
		Rhodoxeralfs	Lithic Rhodoxeralfs
			Vertic Rhodoxeralfs
			Petrocalcic Rhodoxeralfs
			Typic Rhodoxeralfs
			Inceptic Rhodoxeralfs
			Calcic Rhodoxeralfs
	Ustalfs	Durustalfs	Typic durustalfs
		Haplustalfs	Lithic Haplustalfs
			Aquertic Haplustalfs
			Oxyaquic Vertic Haplustalfs
			Torrertic Haplustalfs
			Udertic Haplustalfs
			Vertic Haplustalfs
			Aquic Arenic Haplustalfs
			Aquiltic Haplustalfs
			Aquic Haplustalfs
			Oxyaquic Haplustalfs
			Vitrandic Haplustalfs
			Lamellic Haplustalfs
			Psammentic Haplustalfs
			Arenic Aridic Haplustalfs
			Arenic Haplustalfs
			Calcidic Haplustalfs
			Aridic Haplustalfs
			Kanhaplic Haplustalfs
			Rannaphe napiustans

		Inceptic Haplustalfs
		Calcic Udic Haplustalfs
		Ultic Haplustalfs
		Calcic Haplustalfs
		Udic Haplustalfs
		Typic Haplustalfs
	Kandiustalfs	Grossarenic Kandiustalfs
		Aquic Arenic Kandiustalfs
		Plinthic Kandiustalfs
		Aquic Kandiustalfs
		Arenic Aridic Kandiustalfs
		Arenic Kandiustalfs
		Aridic Kandiustalfs
		Udic Kandiustalfs
		Rhodic Kandiustalfs
		Typic Kandiustalfs
	Kanhaplustalfs	Lithic Kanhaplustalfs
		Aquic Kanhaplustal
		Aridic Kanhaplustalfs
		Udic Kanhaplustalfs
		Rhodic Kanhaplustalfs
		Typic Kanhaplustalfs
	Natrustalfs	Salidic Natrustalfs
		Leptic Torrertic Natrustalfs
		Torrertic Natrustalfs
		Aquertic Natrustalfs
		Aridic Leptic Natrustalfs
		Vertic Natrustalfs
		Aquic Arenic Natrustalfs
		Aquic Natrustalfs
		Arenic Natrustalfs
		Petrocalcic Natrustalfs
		Leptic Natrustalfs
		Haplargidic Natrustalfs
		Aridic Glossic Natrustalfs
		Aridic Natrustalfs
		Mollic Natrustalfs
		Typic Natrustalfs
	Paleustalfs	Aquertic Paleustalfs
		Oxyaquic Vertic Paleustalfs
		Udertic Paleustalfs
		Vertic Paleustalfs Aquic Arenic Paleustalfs
		Aquic Arenic Paleustalis Aquic Paleustalfs
		Oxyaquic Paleustalfs
		Lamellic Paleustalfs
		Psammentic Paleustalfs
		Arenic Aridic Paleustalfs
		Grossarenic Paleustalfs
		Arenic Paleustalfs
		Plinthic Paleustalfs

				Petrocalcic Paleustalfs
				Calcidic Paleustalfs
				Aridic Paleustalfs
				Kandic Paleustalfs
				Rhodic Paleustalfs
				Ultic Paleustalfs
				Udic Paleustalfs
				Typic Paleustalfs
			Plinthustalfs	Typic Plinthustalfs
			Rhodustalfs	Lithic Rhodustalfs
				Kanhaplic Rhodustalfs
				Udic Rhodustalfs
				Typic Rhodustalfs
2	Andisols	Aquands	Cryaquands	Lithic Cryaquands
				Histic Cryaquands
				Thaptic Cryaquands
				Typic Cryaquands
			Duraquands	Histic Duraquands
				Acraquoxic Duraquands
				Thaptic Duraguands
				Typic Duraquands
			Endoaquands	Lithic Endoaquands
				Duric Endoaquands
				Histic Endoaquands
				Alic Endoaquands
				Hydric Endoaquands
				Thaptic Endoaquands
				Typic Endoaquands
			Epiaquands	Duric Epiaquands
				Histic Epiaquands
				Alic Epiaquands
				Hydric Epiaquands
				Thaptic Epiaquands
				Typic Epiaquands
			Gelaquands	Histic Gelaguands
			·	Turbic Gelaquands
	1	1		Thaptic Gelaquands
	+			Typic Gelaquands
			Melanaquands	Lithic Melanaquands
	+		moranayuanus	Acraquoxic Melanaguands
	+			Hydric Pachic Melanaquands
	ļ			Hydric Melanaquands
ļ				Pachic Melanaquands
		_		Thaptic Melanaquands
	ļ			Typic Melanaquands
			Placaquands	Lithic Placaquands
				Duric Histic Placaquands
				Duric Placaquands
· · · · · · · · · · · · · · · · · · ·		1	1	Llistia Disessuando
				Histic Placaquands
				Thaptic Placaquands

	Vitraquands	Lithic Vitraquands
		Duric Vitraquands
		Histic Vitraquands
		Thaptic Vitraquands
		Typic Vitraquands
Cryands	Duricryands	Eutric Duricryands
		Aquic Duricryands
		Eutric Oxyaquic Duricryands
		Oxyaquic Duricryands
		Typic Duricryands
	Fulvicryands	Lithic Fulvicryands
		Folistic Fulvicryands
		Eutric Pachic Fulvicryands
		Eutric Fulvicryands
		Pachic Fulvicryands
		Vitric Fulvicryands
		Typic Fulvicryands
	Hanlocryando	Lithic Haplocryands
	Haplocryands	Folistic Haplocryands
		Aquic Haplocryands
		Oxyaquic Haplocryands
		Alic Haplocryands
		Spodic Haplocryands
		Acrudoxic Haplocryands
		Vitric Haplocryands
		Thaptic Haplocryands
		Xeric Haplocryands Typic Haplocryands
	Hydrocryands	Lithic Hydrocryands Placic Hydrocryands
		Aquic Hydrocryands
		Thaptic Hydrocryands
		Typic Hydrocryands
	Melanocryands	Lithic Melanocryands
 		Typic Melanocryands
		Vitric Melanocryands
	Vitricryands	Lithic Vitricryands
		Folistic Vitricryands
		Aquic Vitricryands
		Oxyaquic Vitricryands
		Spodic Vitricryands
		Thaptic Vitricryands
		Humic Xeric Vitricryands
		Xeric Vitricryands
		Ultic Vitricryands
		Alfic Vitricryands
		Humic Vitricryands
		Typic Vitricryands
Gelands	Vitrigelands	Typic Vitrigelands
		Turbic Vitrigelands

			Humic Vitrigelands
	Torrands	Duritorrands	Petrocalcic Duritorrands
			Vitric Duritorrands
			Typic Duritorrands
		Haplotorrands	Lithic Haplotorrands
			Duric Haplotorrands
			Calcic Haplotorrands
			Typic Haplotorrands
		Vitritorrands	Lithic Vitritorrands
			Duric Vitritorrands
			Aquic Vitritorrands
			Typic Vitritorrands
			Calcic Vitritorrands
	Udands	Durudands	Aquic Durudands
			Eutric Durudands
			Acrudoxic Durudands
			Hydric Durudands
			Pachic Durudands
			Typic Durudands
		Fulvudands	Eutric Lithic Fulvudands
		T dividuarius	Lithic Fulvudands
			Aquic Fulvudands
			Oxyaquic Fulvudands
			Hydric Fulvudands
			Acrudoxic Fulvudands
			Ultic Fulvudands
			Eutric Pachic Fulvudands
			Eutric Fulvudands
			Pachic Fulvudands
			Thaptic Fulvudands
			Typic Fulvudands
		Hapludands	Lithic Hapludands
			Anthraquic Hapludands
			Aquic Duric Hapludands
			Duric Hapludands
			Aquic Hapludands
			Oxyaquic Hapludands
			Alic Hapludands
			Acrudoxic Hydric Hapludands
			Acrudoxic Thaptic Haptudands
			Acrudoxic Ultic Hapludands
			Acrudoxic Unic Hapludands
			Vitric Hapludands
			Hydric Thaptic Hapludands
			Hydric Hapludands
			Eutric Thaptic Hapludands
			Thaptic Hapludands Eutric Hapludands
			Oxic Hapludands
			Onic Hapiqualius

			Ultic Hapludands
			Alfic Hapludands
			Typic Hapludands
		Hydrudands	Lithic Hydrudands
			Aquic Hydrudands
			Acrudoxic Thaptic Hydrudands
			Acrudoxic Hydrudands
			Thaptic Hydrudands
			Eutric Hydrudands
			Ultic Hydrudands
			Typic Hydrudands
		Melanudands	Lithic Melanudands
			Anthraquic Melanudands
			Aquic Melanudands
			Acrudoxic Vitric Melanudands
			Acrudoxic Hydric Melanudands
			Acrudoxic Melanudands
			Pachic Vitric Melanudands
			Vitric Melanudands
			Hydric Pachic Melanudands
			Pachic Melanudands
			Hydric Melanudands
			Thaptic Melanudands
			Ultic Melanudands
			Eutric Melanudands
			Typic Melanudands
		Placudands	Lithic Placudands
		Placuualius	Aquic Placudands
			Acrudoxic Placudands
			Hydric Placudands
			Typic Placudands
	Ustands	Durustands	Aquic Durustands
			Thaptic Durustands
			Humic Durustands
			Typic Durustands
		Haplustands	Lithic Haplustands
ļ			Aquic Haplustands
ļ			Dystric Vitric Haplustands
ļ			Vitric Haplustands
			Pachic Haplustands
			Thaptic Haplustands
			Calcic Haplustands
			Dystric Haplustands
			Oxic Haplustands
			Ultic Haplustands
			Alfic Haplustands
			Humic Haplustands
			Typic Haplustands
	Vitrands	Ustivitrands	Lithic Udivitrands
			Aquic Udivitrands

				Oxyaquic Udivitrands
				Thaptic Udivitrands
				Ultic Udivitrands
				Alfic Udivitrands
				Humic Udivitrands
				Typic Udivitrands
			Udivitrands	Lithic Ustivitrands
				Aquic Ustivitrands
				Thaptic Ustivitrands
				Calcic Ustivitrands
				Humic Ustivitrands
				Typic Ustivitrands
		Xerands	Haploxerands	Lithic Haploxerands
				Aquic Haploxerands
-				Thaptic Haploxerands
				Calcic Haploxerands
				Ultic Haploxerands
				Alfic Humic Haploxerands
				Alfic Haploxerands
	+			Humic Haploxerands
				Typic Haploxerands
			Melanoxerands	Pachic Melanoxerands
				Typic Melanoxerands
				Vitrixerands
				Lithic Vitrixerands
				Aquic Vitrixerands
				Thaptic Vitrixerands
				Alfic Humic Vitrixerands
				Ultic Vitrixerands
				Alfic Vitrixerands
				Humic Vitrixerands
				Typic Vitrixerands
			Vitrixerands	Lithic Vitrixerands
			Vitrixerands	Aquic Vitrixerands
				Thaptic Vitrixerands
				Alfic Humic Vitrixerands
				Ultic Vitrixerands
				Alfic Vitrixerands
				Alfic Vitrixerands
				Typic Vitrixerands
3	Aridisols	Argids	Calciargids	Lithic Calciargids
				Xerertic Calciargids
				Ustertic Calciargids
				Vertic Calciargids
				Aquic Calciargids
<u> </u>				Arenic Ustic Calciargids
	1			Arenic Calciargids
-				Durinodic Xeric Calciargids
				Durinodic Calciargids
-	+			Petronodic Xeric Calciargids
				Petronodic Ustic Calciargids
		_		Petronodic Calciargids
L				Vitrixerandic Calciargids
				Vitrandic Calciargids
				Xeric Calciargids
				Ustic Calciargids
				Typic Calciargids

	Gypsiargids	Aquic Gypsiargids
	Gypsiai gius	Durinodic Gypsiargids
		Vitrixerandic Gypsiargids
		Vitrandic Gypsiargids
		Xeric Gypsiargids
		Ustic Gypsiargids
		Typic Gypsiargids
	Haplargids	Lithic Ruptic-Entic Haplargids
	Tapiargius	Lithic Xeric Haplargids
		Lithic Ustic Haplargids
		Lithic Haplargids
		Xerertic Haplargids
		Ustertic Haplargids
		Vertic Haplargids
		Aquic Haplargids
		Arenic Ustic Haplargids
		Arenic Haplargids
		Durinodic Xeric Haplargids
		Durinodic Haplargids
		Petronodic Ustic Haplargids
		Petronodic Haplargids
		Vitrixerandic Haplargids
		Vitrandic Haplargids
		Xeric Haplargids
		Ustic Haplargids
		Typic Haplargids
	Natrargids	Lithic Xeric Natrargids
		Lithic Ustic Natrargids
		Lithic Natrargids
		Xerertic Natrargids
		Ustertic Natrargids
		Vertic Natrargids
		Aquic Natrargids
		Durinodic Xeric Natrargids
		Durinodic Natrargids
		Petronodic Natrargids
		Glossic Ustic Natrargids
		Haplic Ustic Natrargids
		Haploxeralfic Natrargids
		Haplic Natrargids
		Vitrixerandic Natrargids
		Vitrandic Natrargids
<u>├</u>		
		Xeric Natrargids Ustic Natrargids
<u>├</u>		Glossic Natrargids
	Dalaaraida	Typic Natrargids Vertic Paleargids
	Paleargids	5
		Aquic Paleargids
		Arenic Ustic Paleargids
		Arenic Paleargids
		Calcic Paleargids
		Durinodic Xeric Paleargids
		Durinodic Paleargids
		Petronodic Ustic Paleargids
		Petronodic Paleargids

			Vitrixerandic Paleargids
			Vitrandic Paleargids
			Xeric Paleargids
			Ustic Paleargids
			Typic Paleargids
		Datus auxida	51 0
		Petroargids	Petrogypsic Ustic Petroargids
			Petrogypsic Petroargids
			Duric Xeric Petroargids
			Duric Petroargids
			Natric Petroargids
			Xeric Petroargids
			Ustic Petroargids
			Typic Petroargids
	Calcids	Haplocalcids	Lithic Xeric Haplocalcids
			Lithic Ustic Haplocalcids
			Lithic Haplocalcids
			Vertic Haplocalcids
ļ			Aquic Durinodic Haplocalcids
			Aquic Haplocalcids
			Duric Xeric Haplocalcids
			Duric Haplocalcids
			Durinodic Xeric Haplocalcids
			Durinodic Haplocalcids
			Petronodic Xeric Haplocalcids
			Petronodic Ustic Haplocalcids
			Petronodic Haplocalcids
			Sodic Xeric Haplocalcids
			Sodic Ustic Haplocalcids
			Sodic Haplocalcids
			Vitrixerandic Haplocalcids
			Vitrandic Haplocalcids
			Xeric Haplocalcids
			Ustic Haplocalcids
			Typic Haplocalcids
		Petrocalcids	Aquic Petrocalcids
			Natric Petrocalcids
			Xeralfic Petrocalcids
			Ustalfic Petrocalcids
			Argic Petrocalcids
			Calcic Lithic Petrocalcids
			Calcic Petrocalcids
			Xeric Petrocalcids
			Ustic Petrocalcids
			Typic Petrocalcids
	Cambids	Anthracambids	Typic Anthracambids
		Aquicambids	Sodic Aquicambids
			Durinodic Xeric Aquicambids
			Durinodic Aquicambids
			Petronodic Aquicambids
			Vitrixerandic Aquicambids
			with Ner an are Aquicampius

			Vitrandic Aquicambids
			Fluventic Aquicambids
			Xeric Aquicambids
			Typic Aquicambids
			Ustic Aquicambids
		Haplocambids	Durinodic Xeric Haplocambids
			Durinodic Haplocambids
			Petronodic Xeric Haplocambids
			Petronodic Ustic Haplocambids
			Petronodic Haplocambids
			Sodic Xeric Haplocambids
			Sodic Ustic Haplocambids
			Sodic Haplocambids
			Vitrixerandic Haplocambids
			Vitrandic Haplocambids
			Xerofluventic Haplocambids
			Ustifluventic Haplocambids
			Fluventic Haplocambids
			Xeric Haplocambids
			Typic Haplocambids
			Ustic Haplocambids
		Petrocambids	Sodic Petrocambids
			Vitrixerandic Petrocambids
			Vitrandic Petrocambids
			Xeric Petrocambids
			Ustic Petrocambids
			Typic Petrocambids
	Cryids	Argicryids	Lithic Argicryids
	0.9.00		Vertic Argicryids
			Natric Argicryids
			Vitrixerandic Argicryids
			Vitrandic Argicryids
			Xeric Argicryids
			Ustic Argicryids
			Typic Argicryids
		Calcicryids	Lithic Calcicryids
			Vitrixerandic Calcicryids
			Vitrandic Calcicryids
			Xeric Calcicryids
			Ustic Calcicryids
			Typic Calcicryids
		Gypsicryids	Calcic Gypsicryids
			Vitrixerandic Gypsicryids
			Vitrandic Gypsicryids
			Typic Gypsicryids
		Haplocryids	Lithic Haplocryids
			Vertic Haplocryids
			Vitrixerandic Haplocryids
			Vitrandic Haplocryids

		Xeric Haplocryids
		Ustic Haplocryids
	Petrocryids	Xereptic Petrocryids
		Duric Xeric Petrocryids
		Duric Petrocryids
		Petrogypsic Petrocryids
		Xeric Petrocryids
		Ustic Petrocryids
		Typic Petrocryids
	Salicryids	Typic Salicryids
	-	Aquic Salicryids
Gypsids	Argigypsids	Lithic Argigypsids
		Vertic Argigypsids
		Calcic Argigypsids
		Petronodic Argigypsids
		Vitrixerandic Argigypsids
		Vitrandic Argigypsids
		Xeric Argigypsids
		Ustic Argigypsids
		Typic Argigypsids
	Calcigypsids	Lithic Calcigypsids
		Petronodic Calcigypsids
		Vitrixerandic Calcigypsids
		Vitrandic Calcigypsids
		Xeric Calcigypsids
		Ustic Calcigypsids
		Typic Calcigypsids
	Haplogypsids	Lithic Haplogypsids
		Leptic Haplogypsids
		Sodic Haplogypsids
		Petronodic Haplogypsids
		Vitrixerandic Haplogypsids
		Vitrandic Haplogypsids
		Xeric Haplogypsid
		Ustic Haplogypsids
		Typic Haplogypsids
	Natrigypsids	Lithic Natrigypsids
		Vertic Natrigypsids
		Petronodic Natrigypsids
		Vitrixerandic Natrigypsids
		Vitrandic Natrigypsids
		Xeric Natrigypsids
		Ustic Natrigypsids
		Typic Natrigypsids
	Petrogypsids	Petrocalcic Petrogypsids
		Calcic Petrogypsids
		Vitrixerandic Petrogypsids
		Vitrandic Petrogypsids
		Xeric Petrogypsids

81

				Ustic Petrogypsids
				Typic Petrogypsids
		Durids	Argidurids	Vertic Argidurids
				Aquic Argidurids
				Abruptic Xeric Argidurids
				Abruptic Argidurids
				Haploxeralfic Argidurids
				Argidic Argidurids
				Vitrixerandic Argidurids
				Vitrandic Argidurids
				Xeric Argidurids
				Ustic Argidurids
				Typic Argidurids
			Haplodurids	Aquicambidic Haplodurids
				Aquic Haplodurids
				Xereptic Haplodurids
				Cambidic Haplodurids
				Vitrixerandic Haplodurids
				Vitrandic Haplodurids
				Xeric Haplodurids
				Ustic Haplodurids
				Typic Haplodurids
			Natridurids	Vertic Natridurids
				Aquic Natrargidic Natridurids
				Aquic Natridurids
				Natrixeralfic Natridurids
				Natrargidic Natridurids
				Vitrixerandic Natridurids
				Vitrandic Natridurids
				Xeric Natridurids
				Typic Natridurids
		Salids	Aquisalids	Gypsic Aquisalids
				Calcic Aquisalids
				Typic Aquisalids
			Cryaquents	Aquandic Cryaquents
				Typic Cryaquents
			Haplosalids	Duric Haplosalids
				Petrogypsic Haplosalids
				Gypsic Haplosalids
				Calcic Haplosalids
				Typic Haplosalids
4	Entisols	Aquents	Cryaquents	Aquandic Cryaquents
	1	· ·		Typic Cryaquents
				Aquandic Cryaquents
			Endoaquents	Sulfic Endoaquents
				Lithic Endoaquents
	-	_		Sodic Endoaquents
				Aeric Endoaquents
				Humaqueptic Endoaquents
				Mollic Endoaquents Typic Endoaquents
L				I Typic Linudaquetits

		Epiaquents	Aeric Epiaquents
			Humaqueptic Epiaquents
			Mollic Epiaquents
			Typic Epiaquents
			Sulfic Fluvaquents
		Fluvaquents	
			Vertic Fluvaquents
			Thapto-Histic Fluvaquents
			Aquandic Fluvaquents
			Aeric Fluvaquents
			Humaqueptic Fluvaquents
			Mollic Fluvaquents
			Typic Fluvaquents
		Gelaquents	Typic Gelaquents
		Hydraquents	Sulfic Hydraquents
			Sodic Hydraquents
			Thapto-Histic Hydraquents
			Typic Hydraquents
		Psammaquents	Lithic Psammaquents
			Sodic Psammaquents
			Spodic Psammaquents
			Humaqueptic Psammaquents
			Mollic Psammaquents
			Typic Psammaquents
		Sulfaquents	Haplic Sulfaquents
		·	Histic Sulfaguents
			Thapto-Histic Sulfaquents
			Typic Sulfaquents
	Arents	Torriarents	Sodic Torriarents
	71101113		Duric Torriarents
			Haplic Torriarents
		Udarent	Alfic Udarents
		Odarent	Ultic Udarents
			Mollic Udarents
			Haplic Udarents
		Listaranta	
		Ustarents	Haplic Ustarents Sodic Xerarents
		Xerarents	
			Duric Xerarents
			Alfic Xerarents
			Haplic Xerarents
	Fluvents	Cryofluvents	Andic Cryofluvents
			Vitrandic Cryofluvents
			Aquic Cryofluvents
			Oxyaquic Cryofluvents
			Mollic Cryofluvents
			Typic Cryofluvents
		Gelifluvents	Aquic Gelifluvents
			Typic Gelifluvents
		Torrifluvents	Ustertic Torrifluvents
			Vertic Torrifluvents
			Vitrixerandic Torrifluvents
			Vitrandic Torrifluvents
			Aquic Torrifluvents
			Oxyaquic Torrifluvents
			Duric Xeric Torrifluvents
			Duric Torrifluvents
			Ustic Torrifluvents

			Xeric Torrifluvents
			Anthropic Torrifluvents
			Typic Torrifluvents
		Udifluvents	Aquertic Udifluvents
		oundvents	Vertic Udifluvents
			Andic Udifluvents
			Vitrandic Udifluvents
			Aquic Udifluvents
			Oxyaquic Udifluvents
			Mollic Udifluvents
			Typic Udifluvents
		Ustifluvents	Aquertic Ustifluvents
		Ostinuventis	
			Torrertic Ustifluvents Vertic Ustifluvents
			Anthraquic Ustifluvents
			Aquic Ustifluvents
			Oxyaquic Ustifluvents
			Aridic Ustifluvents
			Udic Ustifluvents
			Mollic Ustifluvents
			Typic Ustifluvents
		Xerofluvents	Vertic Xerofluvents
			Aquandic Xerofluvents
			Andic Xerofluvents
			Vitrandic Xerofluvents
			Aquic Xerofluvents
			Oxyaquic Xerofluvents
			Durinodic Xerofluvents
			Mollic Xerofluvents
			Typic Xerofluvents
	Orthents	Cryorthents	Lithic Cryorthents
			Vitrandic Cryorthents
			Aquic Cryorthents
			Oxyaquic Cryorthents
			Typic Cryorthents
			Lamellic Cryorthents
		Gelorthents	Aquic Gelorthents
			Oxyaquic Gelorthents
			Typic Gelorthents
		Torriorthents	Lithic Ustic Torriorthents
			Lithic Xeric Torriorthents
			Lithic Torriorthents
			Xerertic Torriorthents
			Ustertic Torriorthents
			Vertic Torriorthents
			Vitrandic Torriorthents
<u>├</u>			Aquic Torriorthents
			Oxyaquic Torriorthents Duric Torriorthents
			Ustic Torriorthents
			Xeric Torriorthents
	_		
			Typic Torriorthents
		Udorthents	Lithic Udorthents
			Vitrandic Udorthents
			Aquic Udorthents

			Owaquic Ildertheats
			Oxyaquic Udorthents Vermic Udorthents
			Typic Udorthents
		Ustorthents	Aridic Lithic Ustorthents
			Lithic Ustorthents
			Torrertic Ustorthents
			Vertic Ustorthents
			Anthraquic Ustorthents
			Aquic Ustorthents Oxyaquic Ustorthents
			Durinodic Ustorthents
			Vitritorrandic Ustorthents
			Vitrandic Ustorthents
			Aridic Ustorthents
			Udic Ustorthents
			Typic Ustorthents
		Xerorthents	Lithic Xerorthents
├ ─── ├ ────			Vitrandic Xerorthents
├ ─── ├ ────			Aquic Xerorthents
<u>├</u>			-
			Oxyaquic Xerorthents Durinodic Xerorthents
			Dystric Xerorthents
			Typic Xerorthents
<u>├</u>	Psamments	Cryopsamments	Lithic Cryopsamments
	1 Summerits	Ci yopsaninents	Aquic Cryopsamments
			Oxyaquic Cryopsamments
			Vitrandic Cryopsamments
			Spodic Cryopsamments
			Lamellic Cryopsamments
			Typic Cryopsamments
		Quartzipsamments	Lithic Quartzipsamments
		Qualtzipsainments	
			Aquodic Quartzipsamments
			Aquic Quartzipsamments Oxyaquic Quartzipsamments
			Ustoxic Quartzipsamments
			Udoxic Quartzipsamments
			Plinthic Quartzipsamments
			Lamellic Ustic Quartzipsamments
			Lamellic Quartzipsamments
ļ			Ustic Quartzipsamments
			Xeric Quartzipsamments
			Typic Quartzipsamments
			Spodic Quartzipsamments
		Torripsamments	Lithic Torripsamments
			Oxyaquic Torripsamments
			Vitrandic Torripsamments
			Haploduridic Torripsamments
			Ustic Torripsamments
		1	Xeric Torripsamments
			Rhodic Torripsamments
		Udipsamments	Rhodic Torripsamments Typic Torripsamments
		Udipsamments	Rhodic Torripsamments

			Spodic Udipsamments
			Lamellic Udipsamments
			Plagganthreptic Udipsamments
			Typic Udipsamments
		Ustipsamments	Lithic Ustipsamments
			Aquic Ustipsamments
			Oxyaquic Ustipsamments
			Aridic Ustipsamments
			Lamellic Ustipsamments
			Rhodic Ustipsamments
			Typic Ustipsamments
		Xeropsamments	Lithic Xeropsamments
		Xeropsamments	Aquic Durinodic Xeropsamments
			Aquic Xeropsamments
			Oxyaquic Xeropsamments
			Vitrandic Xeropsamments
			Durinodic Xeropsamments
			Lamellic Xeropsamments
			Dystric Xeropsamments
			Typic Xeropsamments
	Wassents	Fluviwassents	Sulfic Fluviwassents
			Lithic Fluviwassents
			Thapto-Histic Fluviwassents
			Aeric Fluviwassents
			Typic Fluviwassents
		Frasiwassents	Hydric Frasiwassents
			Lithic Frasiwassents
			Psammentic Frasiwassents
			Thapto-Histic Frasiwassents
			Fluventic Frasiwassents
			Aeric Frasiwassents
			Typic Frasiwassents
		Haplowassents	Sulfic Haplowassents
			Lithic Haplowassents
			Aeric Haplowassents
			Typic Haplowassents
		Hydrowassents	Sulfic Hydrowassents
		1 1901 0 Wassel Its	
			Grossic Hydrowassents
			Lithic Hydrowassents
			Thapto-Histic Hydrowassents
		Doommouversets	Typic Hydrowassents
		Psammowassents	Sulfic Psammowassents
			Lithic Psammowassents
			Fluventic Psammowassents
			Aeric Psammowassents
		Culfurer	Typic Psammowassents
		Sulfiwassents	Lithic Sulfiwassents
			Haplic Sulfiwassents
	_		Thapto-Histic Sulfiwassents
			Fluventic Sulfiwassents
			Aeric Sulfiwassents
			Typic Sulfiwassents
	Histels	Fibristels	Lithic Fibristels
			Terric Fibristels
			Fluvaquentic Fibristels

			Sphagnic Fibristels
			Typic Fibristels
		Folistels	Lithic Folistels
			Glacic Folistels
			Typic Folistels
		Glacistels	Hemic Glacistels
			Sapric Glacistels
			Typic Glacistels
		Hemistels	Lithic Hemistels
			Terric Hemistels
			Fluvaquentic Hemistels
			Typic Hemistels
		Consistata	
		Sapristels	Lithic Sapristels
			Terric Sapristels
			Fluvaquentic Sapristels
			Typic Sapristels
	Orthels	Anhyorthels	Lithic Anhyorthels
			Glacic Anhyorthels
			Petrogypsic Anhyorthels
			Gypsic Anhyorthels
			Salic Anhyorthels
			Calcic Anhyorthels
			Nitric Anhyorthels
			Typic Anhyorthels
		Aquorthels	Lithic Aquorthels
			Glacic Aquorthels
			Sulfuric Aquorthels
			Ruptic-Histic Aquorthels
			Andic Aquorthels
			Vitrandic Aquorthels
			Salic Aquorthels
			Psammentic Aquorthels
			Fluvaquentic Aquorthels Typic Aquorthels
		Argiorthels	Lithic Argiorthels
		Argioritieis	-
			Glacic Argiorthels
			Natric Argiorthels
			Typic Argiorthels
		Haplorthels	Lithic Haplorthels
			Glacic Haplorthels Fluvaquentic Haplorthels
			Folistic Haplorthels
			Aquic Haplorthels
			Fluventic Haplorthels
			Typic Haplorthels
		Historthels	Lithic Historthels
			Glacic Historthels
			Fluvaquentic Historthels
			Fluventic Historthels
			Ruptic Historthels
			Typic Historthels
		Mollorthels	Lithic Mollorthels
			Glacic Mollorthels
			Vertic Mollorthels
L I	I	I	

			Andic Mollorthels
			Vitrandic Mollorthels
			Folistic Mollorthels
			Cumulic Mollorthels
			Aquic Mollorthels
			Typic Mollorthels
		Psammorthels	Lithic Psammorthels
		PSaiminor triers	Glacic Psammorthels
			Spodic Psammorthels
		Umbrorthels	Typic Psammorthels Lithic Umbrorthels
		Unbroitneis	
			Glacic Umbrorthels
			Vertic Umbrorthels
			Andic Umbrorthels
			Vitrandic Umbrorthels
			Folistic Umbrorthels
			Cumulic Umbrorthels
			Aquic Umbrorthels
			Typic Umbrorthels
	Turbels	Anhyturbels	Lithic Anhyturbels
			Glacic Anhyturbels
			Petrogypsic Anhyturbels
			Gypsic Anhyturbels
			Nitric Anhyturbels
			Salic Anhyturbels
			Calcic Anhyturbels
			Typic Anhyturbels
		Aquiturbels	Lithic Aquiturbels
			Glacic Aquiturbels
			Sulfuric Aquiturbels
			Ruptic-Histic Aquiturbels
			Psammentic Aquiturbels
			Typic Aquiturbels
		Haploturbels	Lithic Haploturbels
		Hapiotui beis	Glacic Haploturbels
			Aquic Haploturbels
			Folistic Haploturbels
			Typic Haploturbels
		Histoturbels	Lithic Histoturbels
			Glacic Histoturbels
			Ruptic Histoturbels
			Typic Histoturbels
		Molliturbels	Lithic Molliturbels
	1		Glacic Molliturbels
			Vertic Molliturbels
			Andic Molliturbels
			Vitrandic Molliturbels
			Folistic Molliturbels
			Cumulic Molliturbels
			Aquic Molliturbels
			Typic Molliturbels
		Psammoturbels	Lithic Psammoturbels
			Glacic Psammoturbels
			Spodic Psammoturbels Typic Psammoturbels

			Umbriturbels	Lithic Umbriturbels
				Glacic Umbriturbels
				Vertic Umbriturbels
				Andic Umbriturbels
				Vitrandic Umbriturbels
				Folistic Umbriturbels
				Cumulic Umbriturbels
				Aquic Umbriturbels
/		Filewists	Our of the state	Typic Umbriturbels
6	Histosols	Fibrists	Cryofibrists	Hydric Cryofibrists
				Lithic Cryofibrists
				Terric Cryofibrists
				Fluvaquentic Cryofibrists
				Sphagnic Cryofibrists
				Typic Cryofibrists
			Haplofibrists	Hydric Haplofibrists
				Lithic Haplofibrists
				Limnic Haplofibrists
				Terric Haplofibrists
				Fluvaquentic Haplofibrists
				Hemic Haplofibrists
				Typic Haplofibrists
			Sphagnofibrists	Hydric Sphagnofibrists
				Lithic Sphagnofibrists
				Limnic Sphagnofibrists
				Terric Sphagnofibrists
				Fluvaquentic Sphagnofibrists
				Hemic Sphagnofibrists
				Typic Sphagnofibrists
		Folists	Cryofolists	Lithic Cryofolists
				Typic Cryofolists
			Torrifolists	Lithic Torrifolists
				Typic Torrifolists
			Udifolists	Lithic Udifolists
				Typic Udifolists
			Ustifolists	Lithic Ustifolists
				Typic Ustifolists
		Hemists	Cryohemists	Hydric Cryohemists
		Tiornists		Lithic Cryohemists
				Terric Cryohemists
				Fluvaquentic Cryohemists
				Typic Cryohemists
			Haplohemists	Hydric Haplohemists
				Lithic Haplohemists
				Limnic Haplohemists
				Terric Haplohemists
				Fluvaquentic Haplohemists
				Fibric Haplohemists
				Sapric Haplohemists
			Luvihemists	Typic Haplohemists
				Typic Luvihemists
			Sulfihemists	Terric Sulfihemists
				Typic Sulfihemists
			Sulfohemists	Typic Sulfohemists
		Saprists	Cryosaprists	Lithic Cryosaprists

				Limnic Cryosaprists
				Terric Cryosaprists
				Fluvaquentic Cryosaprists
				Typic Cryosaprists
			Haplosaprists	Lithic Haplosaprists
			11401034011313	
				Limnic Haplosaprists Halic Terric Haplosaprists
				Halic Haplosaprists
				Terric Haplosaprists
				Fluvaquentic Haplosaprists Hemic Haplosaprists
			Culficanziata	Typic Haplosaprists
			Sulfisaprists	Terric Sulfisaprists
				Typic Sulfisaprists
			Sulfosaprists	Typic Sulfosaprists
		Wassists	Frasiwassists	Fibric Frasiwassists
				Sapric Frasiwassists
				Typic Frasiwassists
			Haplowassists	Sulfic Haplowassists
				Fibric Haplowassists
				Sapric Haplowassists
				Typic Haplowassists
			Sulfiwassists	Fibric Sulfiwassists
				Sapric Sulfiwassists
				Typic Sulfiwassists
7	Inceptisols	Aquepts	Cryaquepts	Sulfic Cryaquepts
				Histic Lithic Cryaquepts
				Lithic Cryaquepts
				Vertic Cryaquepts
				Histic Cryaquepts
				Aquandic Cryaquepts
				Fluvaquentic Cryaquepts
				Aeric Humic Cryaquepts
				Aeric Cryaquepts
				Humic Cryaquepts
				Typic Cryaquepts
			Endoaquepts	Sulfic Endoaquepts
				Lithic Endoaquepts
				Vertic Endoaquepts
				Aquandic Endoaquepts
				Fluventic Endoaquepts
				Fluvaquentic Endoaquepts
				Fragic Endoaquepts
				Aeric Endoaquepts
				Humic Endoaquepts
				Mollic Endoaquepts
				Typic Endoaquepts
			Epiaquepts	Vertic Epiaquepts
				Aquandic Epiaquepts
				Fluvaquentic Epiaquepts
				Fragic Epiaquepts

			Liberata Enternante
			Humic Epiaquepts
			Mollic Epiaquepts
			Typic Epiaquepts
		Fragiaquepts	Aeric Fragiaquepts
			Humic Fragiaquepts
			Typic Fragiaquepts
		Gelaquepts	Lithic Gelaquepts
			Histic Gelaquepts
			Aquandic Gelaquepts
			Fluvaquentic Gelaquepts
			Typic Gelaquepts
			Turbic Gelaquepts
			Humic Gelaquepts
		Halaquepts	Vertic Halaquepts
			Aquandic Halaquepts
			Duric Halaquepts
			Aeric Halaquepts
			Typic Halaquepts
		Humaquepts	Hydraquentic Humaquepts
			Histic Humaquepts
			Aquandic Humaquepts
			Cumulic Humaquepts
			Fluvaquentic Humaquepts
			Aeric Humaquepts
			Typic Humaquepts
		Petraquepts	Histic Placic Petraquepts
			Placic Petraquepts
			Plinthic Petraquepts
			Typic Petraquepts
		Sulfaquepts	Salidic Sulfaquepts
			Hydraquentic Sulfaquepts
		Marine a su consta	Typic Sulfaquepts
		Vermaquepts	Sodic Vermaquepts
	Anthropto	Llanlanthranta	Typic Vermaquepts
	Anthrepts	Haplanthrepts	Typic Haplanthrepts
	Cruonte	Plagganthrepts	Typic Plagganthrepts Lithic Calcicryepts
	Cryepts	Calcicryepts	
			Oxyaquic Calcicryepts
			Xeric Calcicryepts
			Ustic Calcicryepts
			Typic Calcicryepts
		Dystrocryepts	Lithic Dystrocryepts
		5 51	Aquandic Dystrocryepts
			Haploxerandic Dystrocryepts
			Vitrixerandic Dystrocryepts
<u>├</u> ───			
			Andic Dystrocryepts
			Vitrandic Dystrocryepts
			Fluvaquentic Dystrocryepts
			Folistic Dystrocryepts
			Aquic Dystrocryepts
		1	Oxyaquic Dystrocryepts
			Lamellic Dystrocryepts
			Fluventic Dystrocryepts
			r iuvenitic Dystruct yepts

		Spodic Dystrocryepts
		Xeric Dystrocryepts
		Ustic Dystrocryepts
		Eutric Dystrocryepts
		Typic Dystrocryepts
	Haplocryepts	Lithic Haplocryepts
		Aquandic Haplocryepts
		Haploxerandic Haplocryepts
		Vitrixerandic Haplocryepts
		Haplustandic Haplocryepts
		Ustivitrandic Haplocryepts
		Andic Haplocryepts
		Vitrandic Haplocryepts
		Fluvaquentic Haplocryepts
		Aquic Haplocryepts
		Oxyaquic Haplocryepts
		5
		Lamellic Haplocryepts Fluventic Haplocryepts
		Calcic Haplocryepts
		Xeric Haplocryepts
		Ustic Haplocryepts
		Typic Haplocryepts
	Humicryepts	Lithic Humicryepts
		Aquandic Humicryepts
		Haploxerandic Humicryepts
		Vitrixerandic Humicryepts
		Andic Humicryepts
		Vitrandic Humicryepts
		Fluvaquentic Humicryepts
		Aquic Humicryepts
		Oxyaquic Humicryepts
		Lamellic Humicryepts
		Fluventic Humicryepts
		Spodic Humicryepts
		Xeric Humicryepts
		Eutric Humicryepts
		Typic Humicryepts
Gelepts	Dystrogelepts	Lithic Dystrogelepts
		Andic Dystrogelepts
		Aquic Dystrogelepts
		Fluventic Dystrogelepts
		Turbic Dystrogelepts
		Typic Dystrogelepts
	Haplogelepts	Lithic Haplogelepts
		Andic Haplogelepts
		Aquic Haplogelepts
		Fluventic Haplogelepts
		Typic Haplogelepts
		Turbic Haplogelepts

		Humigelepts	Lithic Humigelepts
		georpee	Andic Humigelepts
			Aquic Humigelepts
			Oxyaquic Humigelepts
			Fluventic Humigelepts
			Turbic Humigelepts
			Eutric Humigelepts
			Typic Humigelepts
	Udepts	Durudepts	Aquandic Durudepts
	Odepts	Durudepts	Andic Durudepts
			Vitrandic Durudepts
			Aquic Durudepts
			Typic Durudepts
		Dystrudepts	Humic Lithic Dystrudepts
			Lithic Dystrudepts
			Vertic Dystrudepts
			Aquandic Dystrudepts
			Andic Oxyaquic Dystrudepts
			Andic Dystrudepts
			Vitrandic Dystrudepts
			Fragiaquic Dystrudepts
			Fluvaquentic Dystrudepts
			Aquic Humic Dystrudepts
			Aquic Dystrudepts
			Oxyaquic Dystrudepts
			Fragic Dystrudepts
			Lamellic Dystrudepts
			Humic Psammentic Dystrudepts
			Fluventic Humic Dystrudepts
			Fluventic Dystrudepts
			Spodic Dystrudepts
			Oxic Dystrudepts
			Ruptic-Alfic Dystrudepts
			Ruptic-Ultic Dystrudepts
			Humic Dystrudepts
			Typic Dystrudepts
		Eutrudepts	Humic Lithic Eutrudepts
			Lithic Eutrudepts
			Aquertic Eutrudepts
			Vertic Eutrudepts
			Andic Eutrudepts
			Vitrandic Eutrudepts
			Anthraquic Eutrudepts
			Fragiaquic Eutrudepts
			Fluvaquentic Eutrudepts
			Aquic Dystric Eutrudepts
			Aquic Dystitic Eutradepts
			Oxyaquic Eutrudepts Fragic Eutrudepts
			Flayic Euli uuepis

		Lamellic Eutrudepts
		Dystric Fluventic Eutrudepts
		Fluventic Eutrudepts
		Arenic Eutrudepts
		Dystric Eutrudepts
		Rendollic Eutrudepts
		Humic Eutrudepts
		Ruptic-Alfic Eutrudepts
		Typic Eutrudepts Andic Fragiudepts
	Fragiudepts	
		Vitrandic Fragiudepts
 		Aquic Fragiudepts
		Humic Fragiudepts
		Typic Fragiudepts
	Humudepts	Lithic Humudepts
		Vertic Humudepts
		Aquandic Humudepts
		Andic Oxyaquic Humudepts
		Andic Humudepts
		Vitrandic Humudepts
		Fluvaquentic Humudepts
		Aquic Humudepts
		Oxyaquic Humudepts
		Psammentic Humudepts
		Oxic Humudepts
		Cumulic Humudepts
		Fluventic Humudepts
		Pachic Humudepts
		Eutric Humudepts
		Entic Humudepts
		Typic Humudepts
	Sulfudepts	Typic Sulfudepts
 Ustepts	Calciustepts	Lithic Petrocalcic Calciustepts
0510013		Lithic Calciustepts
		Torrertic Calciustepts
		Vertic Calciustepts
		Petrocalcic Calciustepts
		Gypsic Calciustepts
		Aquic Calciustepts
		Aridic Calciustepts
		-
		Udic Calciustepts Typic Calciustepts
	Duminatoriata	51
	Durustepts	Typic Durustepts Lithic Dystrustepts
	Dystrustepts	
		Torrertic Dystrustepts
		Vertic Dystrustepts
		Andic Dystrustepts
		Vitrandic Dystrustepts
		Aquic Dystrustepts
		Fluventic Dystrustepts

			Aridic Dystrustepts
			Oxic Dystrustepts
			Humic Dystrustepts
			Typic Dystrustepts
		Haplustepts	Aridic Lithic Haplustepts
			Lithic Haplustepts
			Udertic Haplustepts
			Torrertic Haplustepts
			Vertic Haplustepts
			Andic Haplustepts
			Vitrandic Haplustepts
			Anthraquic Haplustepts
			Aquic Haplustepts
			Oxyaquic Haplustepts
			Oxic Haplustepts
			Lamellic Haplustepts
			Torrifluventic Haplustepts
			Udifluventic Haplustepts
			Fluventic Haplustepts
			Gypsic Haplustepts
			Calcic Udic Haplustepts
			Calcic Haplustepts
			Aridic Haplustepts
			Dystric Haplustepts
			Udic Haplustepts
			Typic Haplustepts
		Humustonte	Lithic Humustepts
		Humustepts	Andic Humustepts
			Vitrandic Humustepts
			Oxyaquic Humustepts
			Oxic Humustepts
			Aridic Humustepts
	Varanta	Coloivaranta	Typic Humustepts
	Xerepts	Calcixerepts	Lithic Calciverepts
			Petrocalcic Calcixerepts
			Vertic Calciverepts
			Sodic Calcixerepts
			Vitrandic Calcixerepts
			Aquic Calcixerepts
			Typic Calcixerepts
		Durixerepts	Aquandic Durixerepts
			Andic Durixerepts
			Vitrandic Durixerepts
			Aquic Durixerepts
			Entic Durixerepts
			Typic Durixerepts
		Dystroxerepts	Humic Lithic Dystroxerepts
			Lithic Dystroxerepts
			Aquandic Dystroxerepts

				Andic Dystroxerepts
				Vitrandic Dystroxerepts
				Fragiaquic Dystroxerepts
				Fluvaquentic Dystroxerepts
				Andic Dystroxerepts
				Vitrandic Dystroxerepts
				Fragiaquic Dystroxerepts
				Fluvaquentic Dystroxerepts
				Aquic Dystroxerepts
				Oxyaquic Dystroxerepts
				Fragic Dystroxerepts
				Fluventic Humic Dystroxerepts
				Fluventic Dystroxerepts
				Humic Dystroxerepts
				Typic Dystroxerepts
		+	Fragixerepts	Andic Fragixerepts
		+		Vitrandic Fragixerepts
		+		Aquic Fragixerepts
		+		Humic Fragixerepts
		+		Typic Fragixerepts
			Haploxerepts	Humic Lithic Haploxerepts
				Lithic Haploxerepts
				Vertic Haploxerepts
				Aquandic Haploxerepts
				Andic Oxyaquic Haploxerepts
				Andic Haploxerepts
				Oxyaquic Vitrandic Haploxerepts
				Vitrandic Haploxerepts
				Gypsic Haploxerepts
				Aquic Haploxerepts
				Lamellic Haploxerepts
				Fragic Haploxerepts
				Fluventic Haploxerepts
				Calcic Haploxerepts
				Humic Haploxerepts
				Typic Haploxerepts
			Llumivoronto	Lithic Humixerepts
		+	Humixerepts	Aquandic Humixerepts
				Andic Humixerepts
				Vitrandic Humixerepts
				Aquic Humixerepts
				Oxyaquic Humixerepts Cumulic Humixerepts
		-		
				Fluventic Humixerepts
		-		Pachic Humixerepts
	_			Entic Humixerepts
	N 4 - 11' 1		A serie He - H	Typic Humixerepts
8	Mollisols	Albolls	Argialbolls	Xerertic Argialbolls Vertic Argialbolls
				Argiaquic Xeric Argialbolls
				AI YIAYUL AEI LAI YIAIDUIIS

		Argiaquic Argialbolls
		Xeric Argialbolls
		Aquandic Argialbolls
		Typic Argialbolls
	Natralbolls	Leptic Natralbolls
		Typic Natralbolls
 Aquolls	Argiaquolls	Arenic Argiaquolls
		Grossarenic Argiaquolls
		Vertic Argiaquolls
		Abruptic Argiaquolls
		Typic Argiaquolls
	Calciaquolls	Petrocalcic Calciaquolls
	Calciaquons	Aeric Calciaquolls
 		Typic Calciaquolis
 	Cryaquolls	Thapto-Histic Cryaquolls
		Aquandic Cryaquolls
		Argic Cryaquolls
		Calcic Cryaquolis
		Cumulic Cryaquolis
		Vertic Cryaquolls
		Typic Cryaquolls
	Duroquelle	Natric Duraquolls
	Duraquolls	Vertic Duraquolis
		Argic Duraquolls
		5
	En de seu velle	Typic Duraquolls
	Endoaquolls	Lithic Endoaquolls
		Cumulic Vertic Endoaquolls
		Fluvaquentic Vertic Endoaquolls
		Vertic Endoaquolls
		Histic Endoaquolls
		Thapto-Histic Endoaquolls
		Aquandic Endoaquolls
		Duric Endoaquolls
		Cumulic Endoaquolls
		Fluvaquentic Endoaquolls
		Typic Endoaquolls
	Epiaquolls	Cumulic Vertic Epiaquolls
		Fluvaquentic Vertic Epiaquolls
		Vertic Epiaquolls
		Histic Epiaquolls
		Thapto-Histic Epiaquolls
		Aquandic Epiaquolls
		Duric Epiaquolls
		Cumulic Epiaquolls
		Fluvaquentic Epiaquolls
		Typic Epiaquolls
	Natraquolls	Vertic Natraquolls
		Glossic Natraquolls
		Typic Natraquolls
 Cryolls	Argicryolls	Lithic Argicryolls

			Vertic Argicryolls
			Andic Argicryolls
			Vitrandic Argicryolls
			Abruptic Argicryolls
			Aquic Argicryolls
			Oxyaquic Argicryolls
			Calcic Pachic Argicryolls
			Pachic Argicryolls
			Calcic Argicryolls
			Alfic Argicryolls
			Ustic Argicryolls
			Xeric Argicryolls
			Typic Argicryolls
		Calcicryolls	Lithic Calcicryolls
			Vitrandic Calcicryolls
			Petrocalcic Calcicryolls
			_
├ ─── │			Pachic Calcionvolls
			Ustic Calcieryolls
			Xeric Calcicryolls
			Lithic Calcicryolls
			Typic Calcicryolls
		Duricryolls	Argic Duricryolls
			Calcic Duricryolls
			Typic Duricryolls
		Haplocryolls	Lithic Haplocryolls
			Vertic Haplocryolls
			Andic Haplocryolls
			Vitrandic Haplocryolls
			Aquic Cumulic Haplocryolls
			Cumulic Haplocryolls
			Fluvaquentic Haplocryolls
			Aquic Haplocryolls
			Oxyaquic Haplocryolls
			Calcic Pachic Haplocryolls
			Pachic Haplocryolls
			Fluventic Haplocryolls
			Calcic Haplocryolls
			Ustic Haplocryolls
			Xeric Haplocryolls
			Typic Haplocryolls
		Natricryolls	Typic Natricryolls
		Palecryolls	Aquic Palecryolls
			Oxyaquic Palecryolls
			Abruptic Palecryolls
			Ustic Palecryolls
			Xeric Palecryolls
			Pachic Palecryolls
			Typic Palecryolls
	Gelolls	Haplogelolls	Lithic Haplogelolls
	000013		Andic Haplogelolls
1		1	

		Aquic Haplogelolls
		Oxyaquic Haplogelolls
		Turbic Haplogelolls
		Cumulic Haplogelolls
		Typic Haplogelolls
Rendolls	Cryrendolls	Typic Cryrendolls
	Haprendolls	Lithic Haprendolls
		Vertic Haprendolls
		Inceptic Haprendolls
		Entic Haprendolls
		Typic Haprendolls
Udolls	Argiudolls	Lithic Argiudolls
		Aquertic Argiudolls
		Oxyaquic Vertic Argiudolls
		Pachic Vertic Argiudolls
		Alfic Vertic Argiudolls
		Vertic Argiudolls
		Andic Argiudolls
		Vitrandic Argiudolls
		Aquic Pachic Argiudolls
		Pachic Argiudolls
		Aquic Argiudolls
		Oxyaquic Argiudolls
		Lamellic Argiudolls
		Psammentic Argiudolls
		Arenic Argiudolls
		Abruptic Argiudolls
		Alfic Argiudolls
		Oxic Argiudolls
		Calcic Argiudolls
		Typic Argiudolls
	Calciudolls	Lithic Calciudolls
		Vertic Calciudolls
		Aquic Calciudolls
		Fluventic Calciudolls
		Typic Calciudolls
	Hapludolls	Lithic Hapludolls
		Aquertic Hapludolls
		Pachic Vertic Hapludolls
		Vertic Hapludolls
		Andic Hapludolls
		Vitrandic Hapludolls
		Aquic Cumulic Hapludolls
		Cumulic Hapludolls
		Fluvaquentic Hapludolls
		Fluventic Hapludolls
		Aquic Pachic Hapludolls
		Pachic Hapludolls
		Aquic Hapludolls
		Oxyaquic Hapludolls
		Vermic Hapludolls

			Calcic Hapludolls
			Entic Hapludolls
			Typic Hapludolls
		Natrudolls	Petrocalcic Natrudolls
		Nati uuulis	Leptic Vertic Natrudolls
			Glossic Vertic Natrudolls
			Vertic Natrudolls
			Leptic Natrudolls
			Glossic Natrudolls
			Calcic Natrudolls
			Typic Natrudolls
		Paleudolls	Vertic Paleudolls
			Petrocalcic Paleudolls
			Aquic Pachic Paleudolls
			Pachic Paleudolls
			Aquic Paleudolls
			Oxyaquic Paleudolls
			Calcic Paleudolls
			Typic Paleudolls
		Vermudolls	Lithic Vermudolls
			Haplic Vermudolls
			Typic Vermudolls
	Ustolls	Argiustolls	Aridic Lithic Argiustolls
			Alfic Lithic Argiustolls
			Lithic Argiustolls
			Aquertic Argiustolls
			Torrertic Argiustolls
			Pachic Udertic Argiustolls
			Udertic Argiustolls
			Pachic Vertic Argiustolls
			Vertic Argiustolls
			Andic Argiustolls
			Vitritorrandic Argiustolls
			Vitrandic Argiustolls
			Aquic Argiustolls
			Oxyaquic Argiustolls
			Pachic Argiustolls
			Calcidic Argiustolls
			Aridic Argiustolls
			Udic Argiustolls
			Duric Argiustolls
			Typic Argiustolls
		Calciustolls	Salidic Calciustolls
			Lithic Petrocalcic Calciustolls
			Lithic Calciustolls
<u>├</u> ───			Torrertic Calciustolls
			Udertic Calciustolls
<u>├</u>			Vertic Calciustolls
			Petrocalcic Calciustolls

	Gypsic Calciustolls
 	Aquic Calciustolls
	Oxyaquic Calciustolls
	Pachic Calciustolls
	Aridic Calciustolls
	Udic Calciustolls
Durrustelle	Typic Calciustolls Natric Durustolls
Durustolls	
	Haploduridic Durustolls
	Argiduridic Durustolls
	Entic Durustolls
	Haplic Durustolls
	Typic Durustolls
Haplustolls	Salidic Haplustolls
	Ruptic-Lithic Haplustolls
	Aridic Lithic Haplustolls
	Lithic Haplustolls
	Aquertic Haplustolls
	Torrertic Haplustolls
	Pachic Udertic Haplustolls
	Udertic Haplustolls
	Pachic Vertic Haplustolls
	Vertic Haplustolls
	Torroxic Haplustolls
	Oxic Haplustolls
	Andic Haplustolls
	Vitritorrandic Haplustolls
	Vitrandic Haplustolls
	Aquic Cumulic Haplustolls
	Cumulic Haplustolls
	Anthraquic Haplustolls
	Fluvaquentic Haplustolls
	Aquic Haplustolls
	Pachic Haplustolls
	Oxyaquic Haplustolls
	Torrifluventic Haplustolls
	Torriorthentic Haplustolls
	Aridic Haplustolls
	Fluventic Haplustolls
	Duric Haplustolls
	Udorthentic Haplustolls
	Udic Haplustolls
	Entic Haplustolls
	Typic Haplustolls
Natrustolls	Leptic Torrertic Natrustolls
	Torrertic Natrustolls
	Leptic Vertic Natrustolls
	Glossic Vertic Natrustolls
	Vertic Natrustolls

			Aridic Leptic Natrustolls
			Leptic Natrustolls
			Aquic Natrustolls
			Aridic Natrustolls
			Duric Natrustolls
			Glossic Natrustolls
			Typic Natrustolls
		Paleustolls	Torrertic Paleustolls
			Udertic Paleustolls
			Vertic Paleustolls
			Aquic Paleustolls
			Pachic Paleustolls
			Petrocalcic Paleustolls
			Calcidic Paleustolls
			Aridic Paleustollss
		Vermustolls	Lithic Vermustolls
			Aquic Vermustolls
			Pachic Vermustolls
			Entic Vermustolls
			Typic Vermustolls
	Xerolls	Argixerolls	Aridic Lithic Argixerolls
			Lithic Ultic Argixerolls
			Lithic Argixerolls
			Torrertic Argixerolls
			Vertic Argixerolls
			Andic Argixerolls
			Vitritorrandic Argixerolls
			Vitrandic Argixerolls
			Aquultic Argixerolls
			Aquic Argixerolls
			Oxyaquic Argixerolls
			Alfic Argixerolls
			Calcic Pachic Argixerolls
			Pachic Ultic Argixerolls
			Pachic Argixerolls
			Argiduridic Argixerolls
			Duric Argixerolls
			Calciargidic Argixerolls
			Aridic Argixerolls
			Calcic Argixerolls
			Ultic Argixerolls
			Typic Argixerolls
		Calcixerolls	Aridic Lithic Calcixerolls
			Lithic Calcixerolls
			Vertic Calcixerolls
			Aquic Calcixerolls
			Oxyaquic Calcixerolls
			Pachic Calcixerolls
			Vitrandic Calcixerolls

102

<u>г г</u>		Aridic Calcixerolls
		Vermic Calcixerolls
		Typic Calcixerolls
	Durixerolls	Vertic Durixerolls
		Vitritorrandic Durixerolls
		Vitrandic Durixerolls
		Aquic Durixerolls
		Paleargidic Durixerolls
		Cambidic Durixerolls
		Haploduridic Durixerolls
		Argidic Durixerolls
		Argiduridic Durixerolls
		Haplic Palexerollic Durixerolls
		Palexerollic Durixerolls
		Haplic Haploxerollic Durixerolls
		Haploxerollic Durixerolls
		Haplic Durixerolls
		Typic Durixerolls
├	 Haploxerolls	Aridic Lithic Haploxerolls
		Lithic Ultic Haploxerolls
		Lithic Haploxerolls
		Torrertic Haploxerolls
		Vertic Haploxerolls
		Andic Haploxerolls
		Vitritorrandic Haploxerolls
		Vitrandic Haploxerolls
		Aquic Cumulic Haploxerolls
		Cumulic Ultic Haploxerolls
		Cumulic Haploxerolls
		Fluvaquentic Haploxerolls
		Aquic Duric Haploxerolls
		Aquultic Haploxerolls
		Aquic Haploxerolls
		Oxyaquic Haploxerolls
		Calcic Pachic Haploxerolls
		Pachic Ultic Haploxerolls
		Pachic Haploxerolls
		Torrifluventic Haploxerolls
		Duridic Haploxerolls
		Calcidic Haploxerolls
		Torripsammentic Haploxerolls
		Torriorthentic Haploxerolls
		Aridic Haploxerolls
		Duric Haploxerolls
		Psammentic Haploxerolls
		Fluventic Haploxerolls
+		Vermic Haploxerolls
		Calcic Haploxerolls
\vdash		Entic Ultic Haploxerolls

				Ultic Haploxerolls
				Entic Haploxerolls
				Typic Haploxerolls
			Natrixerolls	Vertic Natrixerolls
				Aquic Duric Natrixerolls
				Aquic Natrixerolls
				Aridic Natrixerolls
				Duric Natrixerolls
				Typic Natrixerolls
			Palexerolls	Vertic Palexerolls
				Vitrandic Palexerolls
				Aquic Palexerolls
				Pachic Palexerolls
				Petrocalcidic Palexerolls
				Duric Palexerolls
				Aridic Palexerolls
				Ultic Palexerolls
				Petrocalcic Palexerolls
				Haplic Palexerolls
				Typic Palexerolls
9	Oxisols	Aquox	Acraquox	Plinthic Acraquox
				Aeric Acraquox
				Typic Acraquox
			Eutraquox	Histic Eutraquox
				Plinthic Eutraquox
				Aeric Eutraquox
				Humic Eutraquox
				Typic Eutraquox
			Haplaquox	Histic Haplaquox
				Plinthic Haplaquox
				Aeric Haplaquox
				Humic Haplaquox
				Typic Haplaquox
			Plinthaquox	Aeric Plinthaquox
				Typic Plinthaquox
		Perox	Acroperox	Aquic Petroferric Acroperox
				Petroferric Acroperox
				Aquic Lithic Acroperox
				Lithic Acroperox
				Anionic Acroperox
				Plinthic Acroperox
				Aquic Acroperox
				Humic Rhodic Acroperox
				Humic Xanthic Acroperox
				Humic Acroperox
				Rhodic Acroperox
<u> </u>				Xanthic Acroperox
1				Typic Acroperox
			Eutroperox	Aquic Petroferric Eutroperox
			200 000107	

104

		Petroferric Eutroperox
		Aquic Lithic Eutroperox
		Lithic Eutroperox
		Plinthaquic Eutroperox
		Plinthic Eutroperox
		Aquic Eutroperox
		Kandiudalfic Eutroperox
		Humic Inceptic Eutroperox
		Inceptic Eutroperox
		Humic Rhodic Eutroperox
		Humic Xanthic Eutroperox
		Humic Eutroperox
		Rhodic Eutroperox
		Xanthic Eutroperox
		Typic Eutroperox
 	Hanlonerov	Aquic Petroferric Haploperox
 	Haploperox	
 		Petroferric Haploperox
 		Aquic Lithic Haploperox
		Lithic Haploperox Plinthaquic Haploperox
		Plinthic Haploperox
		Aquic Haploperox
		Humic Rhodic Haploperox
		Humic Xanthic Haploperox
		Humic Haploperox
		Rhodic Haploperox
		Xanthic Haploperox
 		Typic Haploperox
	Kandiperox	Aquic Petroferric Kandiperox
		Petroferric Kandiperox
		Aquic Lithic Kandiperox
		Lithic Kandiperox
		Plinthaquic Kandiperox
		Plinthic Kandiperox
		Aquic Kandiperox
		Andic Kandiperox
		Humic Rhodic Kandiperox
		Humic Xanthic Kandiperox
		Humic Kandiperox
		Rhodic Kandiperox
		Xanthic Kandiperox
		Typic Kandiperox
	Sombriperox	Petroferric Sombriperox
		Lithic Sombriperox
		Humic Sombriperox
		Typic Sombriperox
Torrox	Acrotorrox	Petroferric Acrotorrox
		Lithic Acrotorrox
		Typic Acrotorrox

	Aquic Petroferric Acrudox
	Petroferric Acrudox
	Aquic Lithic Acrudox
	Lithic Acrudox
	Anionic Aquic Acrudox
	Anionic Acrudox
	Plinthic Acrudox
	Aquic Acrudox
	Eutric Acrudox
	Humic Rhodic Acrudox
	Humic Xanthic Acrudox
	Humic Acrudox
	Rhodic Acrudox
	Xanthic Acrudox
	Typic Acrudox
Eutrotorroy	Petroferric Eutrotorrox
	Lithic Eutrotorrox
Futerialese	Typic Eutrotorrox
EUTUOOX	Aquic Petroferric Eutrudox Petroferric Eutrudox
	Aquic Lithic Eutrudox
	Lithic Eutrudox
	Plinthaquic Eutrudox
	Plinthic Eutrudox
	Aquic Eutrudox
	Kandiudalfic Eutrudox
	Humic Inceptic Eutrudox
	Inceptic Eutrudox
	Humic Rhodic Eutrudox
	Humic Xanthic Eutrudox
	Humic Eutrudox
	Rhodic Eutrudox
	Xanthic Eutrudox
	Typic Eutrudox
Haplotorrox	Petroferric Haplotorrox
	Lithic Haplotorrox
	Typic Haplotorrox
Hapludox	Aquic Petroferric Hapludox
	Petroferric Hapludox
	Aquic Lithic Hapludox
	Lithic Hapludox
	Plinthaquic Hapludox
	Plinthic Hapludox
	Aquic Hapludox
	Inceptic Hapludox
	Andic Hapludox
	Humic Rhodic Hapludox
	Humic Xanthic Hapludox
	Humic Hapludox

		Rhodic Hapludox
		Xanthic Hapludox
		Typic Hapludox
	Kandiudox	Aquic Petroferric Kandiudox
		Petroferric Kandiudox
		Aquic Lithic Kandiudox
		Lithic Kandiudox
		Plinthaquic Kandiudox
		Plinthic Kandiudox
		Aquic Kandiudox
		Andic Kandiudox
		Humic Rhodic Kandiudox
		Humic Xanthic Kandiudox
		Humic Kandiudox
		Rhodic Kandiudox
		Xanthic Kandiudox
		Typic Kandiudox
	Sombriudox	Petroferric Sombriudox
		Lithic Sombriudox
		Typic Sombriudox
Ustox	Acrustox	Aquic Petroferric Acrustox
		Petroferric Acrustox
		Aquic Lithic Acrustox
		Lithic Acrustox
		Anionic Aquic Acrustox
		Anionic Acrustox
		Plinthic Acrustox
		Aquic Acrustox
		Eutric Acrustox
		Humic Rhodic Acrustox
		Humic Xanthic Acrustox
		Humic Acrustox
		Rhodic Acrustox
		Xanthic Acrustox
		Typic Acrustox
	Eutrustox	Aquic Petroferric Eutrustox
		Petroferric Eutrustox
		Aquic Lithic Eutrustox
		Lithic Eutrustox
		Plinthaquic Eutrustox
		Plinthic Eutrustox
		Aquic Eutrustox
		Kandiustalfic Eutrustox
		Humic Inceptic Eutrustox
		Inceptic Eutrustox
		Humic Rhodic Eutrustox
		Humic Xanthic Eutrustox
		Humic Eutrustox
		Rhodic Eutrustox

				Xanthic Eutrustox
				Typic Eutrustox
			Llanluctov	Aquic Petroferric Haplustox
			Haplustox	
				Petroferric Haplustox
				Aquic Lithic Haplustox
				Lithic Haplustox
				Plinthaquic Haplustox
				Plinthic Haplustox
				Aqueptic Haplustox
				Aquic Haplustox
				Oxyaquic Haplustox
				Inceptic Haplustox
				Humic Rhodic Haplustox
				Humic Xanthic Haplustox
				Humic Haplustox
				Rhodic Haplustox
		1		Xanthic Haplustox
		1		Typic Haplustox
		1	Kandiustox	Aquic Petroferric Kandiustox
		1		Petroferric Kandiustox
				Aquic Lithic Kandiustox
				Lithic Kandiustox
				Plinthaquic Kandiustox
				Plinthic Kandiustox
				Aquic Kandiustox
				Humic Rhodic Kandiustox
				Humic Xanthic Kandiustox
				Humic Kandiustox
				Rhodic Kandiustox
				Xanthic Kandiustox
				Typic Kandiustox
			Sombriustox	Petroferric Sombriustox
				Lithic Sombriustox
				Humic Sombriustox
				Typic Sombriustox
10	Spodosols	Aquods	Alaquods	Lithic Alaquods
10	Spouosois	Aquous	Alaquous	Duric Alaquods
				Histic Alaquods
				Alfic Arenic Alaquods
	+			Arenic Ultic Alaquods
				Arenic Umbric Alaquods
				Arenic Alaquods
				Grossarenic Alaquods
				Alfic Alaquods
				Ultic Alaquods
		ļ		Aeric Alaquods
				Typic Alaquods
			Cryaquods	Lithic Cryaquods
				Placic Cryaquods

		Duric Cryaquods
		Andic Cryaquods
		Entic Cryaquods
		Typic Cryaquods
	Duraquods	Histic Duraquods
	Duraquous	Andic Duraquods
		Typic Duraquods
	Endoaquods	Lithic Endoaguods
	Enuoaquous	Histic Endoaquods
		Andic Endoaquods
		Argic Endoaquods
		Umbric Endoaquods
		Typic Endoaquods
	Epiaquods	Lithic Epiaquods
		Histic Epiaquods
		Andic Epiaquods
		Alfic Epiaquods
		Ultic Epiaquods
		Umbric Epiaquods
		Typic Epiaquods
	Fragiaquods	Histic Fragiaquods
		Plagganthreptic Fragiaquods
		Argic Fragiaquods
		Typic Fragiaquods
	Placaquods	Andic Placaquods
		Typic Placaquods
Cryods	Duricryods	Andic Duricryods
		Aquic Duricryods
		Oxyaquic Duricryods
		Humic Duricryods
		Typic Duricryods
	Haplocryods	Lithic Haplocryods
		Aquandic Haplocryods
		Andic Haplocryods
		Folistic Haplocryods
		Aquic Haplocryods
		Oxyaquic Haplocryods
		Entic Haplocryods
		Typic Haplocryods
	Humicryods	Lithic Humicryods
		Aquandic Humicryods
		Andic Humicryods
		Folistic Humicryods
		Aquic Humicryods
		Oxyaquic Humicryods
		Typic Humicryods
	Placocryods	Andic Placocryods
		Humic Placocryods
		Typic Placocryods
Gelods	Haplogelods	Lithic Haplogelods
OCIOUS	Tiapiogeious	LITTIC Hapibyelous

			Andic Haplogelods
			Aquic Haplogelod
			Turbic Haplogelods
			Typic Haplogelods
		Humigelods	Lithic Humigelods
		<u> </u>	Andic Humigelods
			Aquic Humigelods
			Turbic Humigelods
			Typic Humigelods
	Humods	Durihumods	Andic Durihumods
			Typic Durihumods
		Fragihumods	Typic Fragihumods
		Haplohumods	Lithic Haplohumods
			Andic Haplohumods
			Plagganthreptic Haplohumods
			Typic Haplohumods
		Placohumods	Andic Placohumods
		FIACULIUMOUS	
	Orthods	Alorthada	Typic Placohumods Oxyaquic Alorthods
	Urthous	Alorthods	Arenic Ultic Alorthods
			Arenic Alorthods
			Entic Grossarenic Alorthods
			Entic Alorthods
			Grossarenic Alorthods
			Plagganthreptic Alorthods
			Alfic Alorthods
			Ultic Alorthods
			Typic Alorthods
		Durorthods	Andic Durorthods
			Typic Durorthods
		Fragiorthods	Aquic Fragiorthods
			Alfic Oxyaquic Fragiorthods
			Oxyaquic Fragiorthods
			Plagganthreptic Fragiorthods
			Alfic Fragiorthods
			Ultic Fragiorthods
			Entic Fragiorthods
			Typic Fragiorthods
		Haplorthods	Entic Lithic Haplorthods
			Lithic Haplorthods
			Fragiaquic Haplorthods
			Aqualfic Haplorthods
			Aquentic Haplorthods
			Aquic Haplorthods
			Alfic Oxyaquic Haplorthods
			Oxyaquic Ultic Haplorthods
			Fragic Haplorthods
			Lamellic Oxyaquic Haplorthods
			Lamellic Haplorthods

				Oxyaquic Haplorthods
				Andic Haplorthods
				Alfic Haplorthods
				Ultic Haplorthods
				Entic Haplorthods
				Typic Haplorthods
			Placorthods	Typic Placorthods
11	Ultisols	Aquults	Albaquults	Vertic Albaquults
				Kandic Albaquults
				Aeric Albaquults
				Typic Albaquults
			Endoaquults	Arenic Endoaquults
				Grossarenic Endoaquults
				Aeric Endoaquults
				Typic Endoaquults
			Epiaquults	Vertic Epiaquults
				Aeric Fragic Epiaquults
				Arenic Epiaquults
				Grossarenic Epiaquults
				Fragic Epiaquults
				Typic Epiaquults
				Aeric Epiaquults
			Fragiaquults	Aeric Fragiaquults
				Plinthic Fragiaquults
				Umbric Fragiaquults
				Typic Fragiaquults
			Kandiaquults	Acraquoxic Kandiaquults
			Ranulaquuits	Arenic Plinthic Kandiaquults
				Arenic Umbric Kandiaquults
				Arenic Kandiaquults
				Grossarenic Kandiaguults
				Plinthic Kandiaquults
				Aeric Kandiaquults
				Umbric Kandiaquults
				Typic Kandiaquults
			Kaphanlaguulta	Aquandic Kanhaplaquults
			Kanhaplaquults	Plinthic Kanhaplaquults
				Aeric Umbric Kanhaplaquults
				Aeric Kanhaplaquults Umbric Kanhaplaquults
	-	-		
	_		Delessivite	Typic Kanhaplaquults
	_		Paleaquults	Vertic Paleaquults
	-			Arenic Plinthic Paleaquults
	-			Arenic Umbric Paleaquults
				Arenic Paleaquults
				Grossarenic Paleaquults
				Plinthic Paleaquults
				Aeric Paleaquults
				Umbric Paleaquults
				Typic Paleaquults

		Plinthaquults	Kandic Plinthaquults
			Typic Plinthaquults
		Umbraquults	Plinthic Umbraguults
			Typic Umbraquults
	Humults	Haplohumults	Lithic Haplohumults
	Tidilidits		Aquandic Haplohumults
			Aquic Haplohumults
			Andic Haplohumults
			Plinthic Haplohumults
			Typic Haplohumults
			Ustic Haplohumults
			Xeric Haplohumults
			Oxyaquic Haplohumults
		Kandihumults	Andic Ombroaquic Kandihumults
		Kanumununs	Ustandic Kandihumults
			Andic Kandihumults
			Aquic Kandihumults
			Ombroaquic Kandihumults
			Plinthic Kandihumults
			Ustic Kandihumults
			Xeric Kandihumults
			Anthropic Kandihumults
			Typic Kandihumults
		Kanhaplohumults	Lithic Kanhaplohumults
			Ustandic Kanhaplohumults
			Andic Kanhaplohumults
			Aquic Kanhaplohumults
			Ombroaquic Kanhaplohumults
			Ustic Kanhaplohumults
			Xeric Kanhaplohumults
			Typic Kanhaplohumults
			Anthropic Kanhaplohumults
		Palehumults	Aquandic Palehumults
			Andic Palehumults
			Aquic Palehumults
			Plinthic Palehumults
			Oxyaquic Palehumults
			Ustic Palehumults
			Xeric Palehumults
			Typic Palehumults
		Plinthohumults	Typic Plinthohumults
		Sombrihumults	Typic Sombrihumults
	Udults	Fragiudults	Arenic Fragiudults
			Plinthaquic Fragiudults
			Glossaquic Fragiudults
			Aquic Fragiudults
			Plinthic Fragiudults
			Glossic Fragiudults
			Humic Fragiudults
ı I —			Typic Fragiudults

	Hapludults	Lithic-Ruptic-Entic Hapludults
		Lithic Hapludults
		Vertic Hapludults
		Fragiaquic Hapludults
		Aquic Arenic Hapludults
		Aquic Hapludults
		Fragic Hapludults
		Oxyaquic Hapludults
		Lamellic Hapludults
		Psammentic Hapludults
		Arenic Hapludults
		Grossarenic Hapludults
		Inceptic Hapludults
		Humic Hapludults
		Typic Hapludults
<u>├───</u>	Kandiudults	Arenic Plinthaquic Kandiudults
<u>├──</u>		Aquic Arenic Kandiudults
		Aquic Arenic Kandiudults
<u>├</u>		Arenic Phintic Kandiudults
<u>├</u>		Arenic Kandiudults
		Grossarenic Plinthic Kandiudults Grossarenic Kandiudults
		Acrudoxic Plinthic Kandiudults
		Acrudoxic Kandiudults
		Plinthaquic Kandiudults
		Aquandic Kandiudults
		Andic Kandiudults
		Aquic Kandiudults
		Plinthic Kandiudults
		Ombroaquic Kandiudults
		Oxyaquic Kandiudults
		Sombric Kandiudults
		Rhodic Kandiudults
		Typic Kandiudults
	Kanhapludults	Lithic Kanhapludults
		Plinthaquic Kanhapludults
		Arenic Plinthic Kanhapludults
		Arenic Kanhapludults
		Acrudoxic Kanhapludults
		Fragiaquic Kanhapludults
		Andic Kanhapludults
		Aquic Kanhapludults
		Ombroaquic Kanhapludults
		Oxyaquic Kanhapludults
		Plinthic Kanhapludults
		Fragic Kanhapludults
		Rhodic Kanhapludults
		Typic Kanhapludults

		Spodic Paleudults
		Arenic Plinthaquic Paleudults
		Aquic Arenic Paleudults
		Anthraquic Paleudults
		Plinthaquic Paleudults
		Fragiaquic Paleudults
		Aquic Paleudults
		Oxyaquic Paleudults
		Lamellic Paleudults
		Arenic Plinthic Paleudults
		Psammentic Paleudults
		Grossarenic Plinthic Paleudults
		Plinthic Paleudults
		Arenic Rhodic Paleudults
		Arenic Paleudults
		Grossarenic Paleudults
		Fragic Paleudults
		Rhodic Paleudults
		Typic Paleudults
	Plinthudults	Typic Plinthudults
	Rhodudults	Lithic Rhodudults
		Psammentic Rhodudults
		Typic Rhodudults
Ustults	Haplustults	Lithic Haplustults
		Petroferric Haplustults
		Aquic Haplustults
		Arenic Haplustults
 		Ombroaquic Haplustults
		Plinthic Haplustults
		Kanhaplic Haplustults
		Typic Haplustults
	Kandiustults	
 	Kandiustuits	Acrustoxic Kandiustults
 		Aquic Kandiustults
		Arenic Plinthic Kandiustults
 		Arenic Kandiustults
 		Udandic Kandiustults
		Andic Kandiustults
		Plinthic Kandiustults
		Aridic Kandiustults
		Udic Kandiustults
		Rhodic Kandiustults
		Typic Kandiustults
	Kanhaplustults	Lithic Kanhaplustults
		Acrustoxic Kanhaplustults
		Aquic Kanhaplustults
		Arenic Kanhaplustults
		Udandic Kanhaplustults
		Udandic Kanhaplustults Andic Kanhaplustults

				Ombroaquic Kanhaplustults
				Aridic Kanhaplustults
				Udic Kanhaplustults
				Rhodic Kanhaplustults
				Typic Kanhaplustults
			Paleustults	Typic Paleustults
			Plinthustults	Plinthustults
				Haplic Plinthustults
				Typic Plinthustults
			Rhodustults	Rhodustults
			KIIUUUSUUIIS	Lithic Rhodustults
				Psammentic Rhodustults
	-	Vanulta		Typic Rhodustults
		Xerults	Haploxerults	Lithic Ruptic-Inceptic Haploxerults Lithic Haploxerults
				Aquic Haploxerults
		-		Andic Haploxerults
		-		Lamellic Haploxerults
				Psammentic Haploxerults
				Arenic Haploxerults
				Grossarenic Haploxerults
				Typic Haploxerults
			Palexerults	Aquandic Palexerults
				Aquic Palexerults
				Andic Palexerults
				Typic Palexerults
12	Vertisols	Aquerts	Calciaquerts	Aeric Calciaquerts
				Typic Calciaquerts
			Duraquerts	Aridic Duraquerts
				Xeric Duraquerts
				Ustic Duraquerts
				Aeric Duraquerts
				Chromic Duraquerts
				Typic Duraquerts
			Dystraquerts	Sulfaqueptic Dystraquerts
				Aridic Dystraquerts
				Ustic Dystraquerts
				Aeric Dystraquerts
				Leptic Dystraquerts
				Entic Dystraquerts
				Chromic Dystraquerts
				Typic Dystraquerts
			Endoaquerts	Halic Endoaquerts
		1		Sodic Endoaquerts
				Aridic Endoaquerts
				Xeric Endoaquerts
				Ustic Endoaquerts
				Aeric Endoaquerts
				Leptic Endoaquerts
				Entic Endoaquerts
				LITTIC LITUUAQUEITS

			Chromic Endoaquerts
			Typic Endoaquerts
		Epiaquerts	Halic Epiaquerts
			Sodic Epiaquerts
			Aridic Epiaquerts
			Xeric Epiaquerts
			Ustic Epiaquerts
			Aeric Epiaquerts
			Leptic Epiaquerts
			Entic Epiaquerts
			Chromic Epiaquerts
			Typic Epiaquerts
		Natraquerts	Typic Natraquerts
		Salaquerts	Aridic Salaquerts
			Ustic Salaquerts
			Leptic Salaquerts
			Entic Salaquerts
			Chromic Salaquerts
			Typic Salaquerts
		Sulfaquerts	Salic Sulfaquerts
			Sulfic Sulfaquerts
			Typic Sulfaquerts
	Cryerts	Haplocryerts	Sodic Haplocryerts
			Chromic Haplocryerts
			Typic Haplocryerts
		Humicryerts	Sodic Humicryerts
			Typic Humicryerts
	Torrerts	Calcitorrerts	Petrocalcic Calcitorrerts
			Leptic Calcitorrerts
			Entic Calcitorrerts
			Chromic Calcitorrerts
			Typic Calcitorrerts
		Gypsitorrerts	Chromic Gypsitorrerts
			Typic Gypsitorrerts
		Haplotorrerts	Halic Haplotorrerts
<u>├</u>			Sodic Haplotorrerts
├ ─── ├			Leptic Haplotorrerts
<u>├</u>			Entic Haplotorrerts
├ ─── ├ ───			Chromic Haplotorrerts
			Typic Haplotorrerts
<u>├</u> ──		Colitorrarta	
├ ─── ├ ───		Salitorrerts	Aquic Salitorrerts
			Leptic Salitorrerts
			Entic Salitorrerts
			Chromic Salitorrerts
			Typic Salitorrerts
	Uderts	Dystruderts	Aquic Dystruderts
├ ───			Oxyaquic Dystruderts
			Leptic Dystruderts
			Entic Dystruderts
			Chromic Dystruderts

			Typic Dystruderts
		Hapluderts	Lithic Hapluderts
			Aquic Hapluderts
			Oxyaquic Hapluderts
			Leptic Hapluderts
			Entic Hapluderts
			Chromic Hapluderts
			Typic Hapluderts
	Usterts	Calciusterts	Lithic Calciusterts
			Lithic Calciusterts
			Sodic Calciusterts
			Petrocalcic Calciusterts
			Aridic Calciusterts
			Udic Calciusterts
			Leptic Calciusterts
			Entic Calciusterts
<u>├</u> ───			Chromic Calciusterts
<u>├</u>			Typic Calciusterts
<u>├</u>		Dystrusterts	Lithic Dystrusterts
<u>├</u>			Aquic Dystrusterts
			Aridic Dystrusterts
			Udic Dystrusterts
			Leptic Dystrusterts
			Entic Dystrusterts
			Chromic Dystrusterts
			Typic Dystrusterts
		Cupciluctorto	Lithic Gypsiusterts
		Gypsiusterts	Halic Gypsiusterts
			Sodic Gypsiusterts Aridic Gypsiusterts
			Udic Gypsiusterts
			Leptic Gypsiusterts
			Entic Gypsiusterts
			Chromic Gypsiusterts
			Typic Gypsiusterts
		Haplusterts	Lithic Haplusterts
			Halic Haplusterts
			Sodic Haplusterts
			Petrocalcic Haplusterts
			Gypsic Haplusterts
			Calcic Haplusterts
			Aridic Leptic Haplusterts
			Aridic Haplusterts
			Leptic Udic Haplusterts
			Entic Udic Haplusterts
			Chromic Udic Haplusterts
ļ			Udic Haplusterts
			Leptic Haplusterts
			Entic Haplusterts

National Spatial Data Infrastructure (NSDI)

Department of Science & Technology, Govt. of India East Block-7, Level-5, Sector-1, R K Puram New Delhi - 110 066. Tel: 011 - 2617 7249, Fax : 011 - 2618 2967 http://nsdi.gov.in http://nsdiindia.gov.in

		Chromic Haplusterts
		Typic Haplusterts
	Salusterts	Lithic Salusterts
		Sodic Salusterts
		Aquic Salusterts
		Aridic Salusterts
		Leptic Salusterts
		Entic Salusterts
		Chromic Salusterts
		Typic Salusterts
Xererts	Calcixererts	Lithic Calcixererts
		Petrocalcic Calcixererts
		Aridic Calcixererts
		Leptic Calcixererts
		Entic Calcixererts
		Chromic Calcixererts
		Typic Calcixererts
	Durixererts	Halic Durixererts
		Sodic Durixererts
		Aquic Durixererts
		Aridic Durixererts
		Udic Durixererts
		Haplic Durixererts
		Chromic Durixererts
		Typic Durixererts
	Haploxererts	Lithic Haploxererts
		Halic Haploxererts
		Sodic Haploxererts
		Aridic Haploxererts
		Aquic Haploxererts
		Udic Haploxererts
		Leptic Haploxererts
		Entic Haploxererts
		Chromic Haploxererts
		TypicHaploxererts